Help ?

IGMIN: We're glad you're here. Please click 'create a new query' if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click 'take me to my Query.'

Search

Organised by  IgMin Fevicon

Languages

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

Articles

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

Explore Content

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

Identify Us

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
publications.support@igmin.org
E-Books Support
ebooks.support@igmin.org
Webinars & Conferences Support
webinarsandconference@igmin.org
Content Writing Support
contentwriting.support@igmin.org

Search

Select Language

Explore Section

Content for the explore section slider goes here.

27 of 183
Exploring Upper Limb Kinematics in Limited Vision Conditions: Preliminary Insights from 3D Motion Analysis and IMU Data
Artemis Zarkadoula, Themistoklis Tsatalas, George Bellis, Paris Papaggelos, Evangelia Vlahogianni, Stefanos Moustos, Eirini Koukourava and Dimitrios Tsaopoulos
Abstract

Abstract at IgMin Research

Our vision is to be a bridge for scientific fields, fostering dialogue and rapid progress.

Engineering Group Mini Review Article ID: igmin137

A Capsule Neural Network (CNN) based Hybrid Approach for Identifying Sarcasm in Reddit Dataset

Mechanical Engineering Data EngineeringArtificial Intelligence DOI10.61927/igmin137 Affiliation

Affiliation

    Harun Jamil, Department of Electronic Engineering, Jeju National University, Jeju-si, Jeju-do 63243, Republic of Korea, Email: harunjamil@hotmail.com

2.3k
VIEWS
781
DOWNLOADS
Connect with Us

Abstract

Sarcasm, a standard social media message, delivers the opposite meaning through irony or teasing. Unfortunately, identifying sarcasm in written text is difficult in natural language processing. The work aims to create an effective sarcasm detection model for social media text data, with possible applications in sentiment analysis, social media analytics, and online reputation management. A hybrid Deep learning strategy is used to construct an effective sarcasm detection model for written content on social media networks. The design emphasizes feature extraction, selection, and neural network application. Limited research exists on detecting sarcasm in human speech compared to emotion recognition. The study recommends using Word2Vec or TF-IDF for feature extraction to address memory and temporal constraints. Use feature selection techniques like PCA or LDA to enhance model performance by selecting relevant features. A Capsule Neural Network (CNN) and Long Short-Term Memory (LSTM) collect contextual information and sequential dependencies in textual material. We evaluate Reddit datasets with labelled sarcasm data using metrics like Accuracy. Our hybrid method gets 95.60% accuracy on Reddit.

Figures

References

    1. Shubham R, Chandankhede C. Sarcasm detection of online comments using emotion detection. 2018 International conference on inventive research in computing applications (ICIRCA). IEEE, 2018.
    2. Vitman O, Kostiuk Y, Sidorov G, Gelbukh A. Sarcasm detection framework using context, emotion, and sentiment features. Expert Systems with Applications. 2023; 234: 121068.
    3. Šandor D, Babac MB. Sarcasm detection in online comments using machine learning. Information Discovery and Delivery, (ahead-of-print). 2023.
    4. Pandey R, Singh JP. BERT-LSTM model for sarcasm detection in code-mixed social media posts. Journal of Intelligent Information Systems. 2023; 60(1): 235-254.
    5. Tan YY, Chow CO, Kanesan J, Chuah JH, Lim Y. Sentiment Analysis and Sarcasm Detection using Deep Multi-Task Learning. Wirel Pers Commun. 2023;129(3):2213-2237. doi: 10.1007/s11277-023-10235-4. Epub 2023 Mar 4. PMID: 36987507; PMCID: PMC9985100.
    6. Pulkit M, Soni D. Identification of sarcasm using word embeddings and hyperparameters tuning. Journal of Discrete Mathematical Sciences and Cryptography. 2019; 22.4: 465-489.
    7. Qiao Y, Jing L, Song X, Chen X, Zhu L, Nie L. Mutual-enhanced incongruity learning network for multi-modal sarcasm detection. In Proceedings of the AAAI Conference on Artificial Intelligence. 2023; 37: 9507-9515.
    8. Usman N. Towards improved deep contextual embedding for the identification of irony and sarcasm. 2020 International joint conference on neural networks (IJCNN). IEEE. 2020.
    9. Aniruddha G, Veale T. Fracking sarcasm using neural network. Proceedings of the 7th workshop on computational approaches to subjectivity, sentiment, and social media analysis. 2016.
    10. Zhang M, Zhang Y, Fu G. Tweet sarcasm detection using deep neural network. In Matsumoto Y., Prasad R. (Eds.), Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers. 2016; 2449–2460.
    11. Alexandros PR, Siolas G, Stafylopatis AG. A transformer-based approach to irony and sarcasm detection. Neural Computing and Applications. 2020; 32: 17309-17320.
    12. Yi T. Reasoning with sarcasm by reading in-between. arXiv preprint arXiv:1805.02856 (2018).
    13. Avinash K. Adversarial and auxiliary features-aware bert for sarcasm detection. Proceedings of the 3rd ACM India Joint International Conference on Data Science Management of Data (8th ACM IKDD CODS 26th COMAD). 2021.

Similar Articles

Kinetic Study of the Removal of Reafix Yellow B8G Dye by Boiler Ash
Peterson Filisbino Prinz, Mariane Hawerroth, Liliane Schier de Lima and Juliana Martins Teixeira de Abreu Pietrobelli
DOI10.61927/igmin127
System for Detecting Moving Objects Using 3D Li-DAR Technology
Md. Milon Rana, Orora Tasnim Nisha, Md. Mahabub Hossain, Md Selim Hossain, Md Mehedi Hasan and Md Abdul Muttalib Moon
DOI10.61927/igmin167
×

Why Publish with IgMin Research?

Submit Your Article