Help ?

IGMIN: We're glad you're here. Please click 'create a new query' if you are a new visitor to our website and need further information from us.

If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click 'take me to my Query.'

Search

Organised by  IgMin Fevicon

Languages

Browse by Subjects

Welcome to IgMin Research – an Open Access journal uniting Biology, Medicine, and Engineering. We’re dedicated to advancing global knowledge and fostering collaboration across scientific fields.

Members

We promote fostering alliances across disciplines to catalyze the rapid development of ideas.

Articles

We promote fostering alliances across disciplines to catalyze the rapid development of ideas.

Explore Content

We promote fostering alliances across disciplines to catalyze the rapid development of ideas.

Identify Us

We promote fostering alliances across disciplines to catalyze the rapid development of ideas.

IgMin Corporation

Welcome to IgMin, a leading platform dedicated to enhancing knowledge dissemination and professional growth across multiple fields of science, technology, and the humanities. We believe in the power of open access, collaboration, and innovation. Our goal is to provide individuals and organizations with the tools they need to succeed in the global knowledge economy.

Publications Support
publications.support@igmin.org
E-Books Support
ebooks.support@igmin.org
Webinars & Conferences Support
webinarsandconference@igmin.org
Content Writing Support
contentwriting.support@igmin.org

Search

Select Language

Explore Section

Content for the explore section slider goes here.

Abstract

Abstract at IgMin Research

We promote fostering alliances across disciplines to catalyze the rapid development of ideas.

Engineering Group Review Article Article ID: igmin294

A Comprehensive Review of Federated Learning in Cancer Diagnosis and Prognosis Prediction

Artificial Intelligence DOI10.61927/igmin294 Affiliation

Affiliation

    1Assistant Professor, Department of Computer Science and Engineering, NBKR Institute of Science and Technology, Vidyanagar, India

    2Assistant Professor, Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Tirupati, India

76
VIEWS
11
DOWNLOADS
Connect with Us

Abstract

Federated learning (FL) has emerged as a promising approach for collaborative model training across multiple institutions without sharing sensitive patient data. In the context of cancer diagnosis and prognosis prediction, FL offers a potential solution to the challenges associated with data privacy and security. This paper reviews the application of FL in cancer diagnosis and prognosis prediction, highlighting its key benefits, limitations, and future research directions. We discuss the potential of FL to improve the accuracy and generalizability of predictive models by leveraging diverse and distributed datasets while preserving data privacy. Furthermore, we examine the technical and regulatory considerations associated with implementing FL in the healthcare domain. Finally, we identify opportunities for future research and development in FL for cancer diagnosis and prognosis prediction.

Figures

References

    1. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, Milchenko M, Xu W, Marcus D, Colen RR, Bakas S. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020 Jul 28;10(1):12598. doi: 10.1038/s41598-020-69250-1. PMID: 32724046; PMCID: PMC7387485.
    2. Maurya Y, Chandrahasan P. Federated learning for colorectal cancer prediction. In: 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT); IEEE. 2022;1-5.
    3. Tan YN, Tinh VP, Lam PD, Nam NH, Khoa TA. A transfer learning approach to breast cancer classification in a federated learning framework. IEEE Access. 2023;11:27462-74.
    4. Dasaradharami Reddy K, Gadekallu TR. A Comprehensive Survey on Federated Learning Techniques for Healthcare Informatics. Comput Intell Neurosci. 2023 Mar 1;2023:8393990. doi: 10.1155/2023/8393990. PMID: 36909974; PMCID: PMC9995203.
    5. Kandati DR, Anusha S. Security and privacy in federated learning: A survey. Trends Comput Sci Inf Technol. 2023;8(2):029-37.
    6. Srivastava G, Kandati DR, Yenduri G, Hegde P, Gadekallu TR, Maddikunta PKR, Bhattacharya S. Federated learning enabled edge computing security for Internet of Medical Things: Concepts, challenges and open issues. In: Security and Risk Analysis for Intelligent Edge Computing; Cham: Springer International Publishing; 2023. 67-89.
    7. Chemmalar GS, Ramalingam M, Yenduri G, Raj Deepti G, Dasari Bhulakshmi, Dasaradharami KR, Supriya Y, Reddy Thippa G, Singh Rajkumar R, Jhaveri HR. The amalgamation of federated learning and explainable artificial intelligence for the Internet of Medical Things: A review. Recent Adv Comput Sci Commun. 2024;17:e121223224367. https://dx.doi.org/10.2174/0126662558266152231128060222
    8. Rahman A, Hossain MS, Muhammad G, Kundu D, Debnath T, Rahman M, Khan MSI, Tiwari P, Band SS. Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues. Cluster Comput. 2022 Aug 17:1-41. doi: 10.1007/s10586-022-03658-4. Epub ahead of print. PMID: 35996680; PMCID: PMC9385101.
    9. Gu X, Sabrina F, Fan Z, Sohail S. A Review of Privacy Enhancement Methods for Federated Learning in Healthcare Systems. Int J Environ Res Public Health. 2023 Aug 7;20(15):6539. doi: 10.3390/ijerph20156539. PMID: 37569079; PMCID: PMC10418741.
    10. Subramanian M, Rajasekar V, VE S, Shanmugavadivel K, Nandhini PS. Effectiveness of decentralized federated learning algorithms in healthcare: A case study on cancer classification. Electronics. 2022;11(24):4117.
    11. Kandati DR, Gadekallu TR. Genetic clustered federated learning for COVID-19 detection. Electronics. 2022;11(17):2714.
    12. Gupta M, Kumar M, Gupta Y. A blockchain-empowered federated learning-based framework for data privacy in lung disease detection system. Comput Human Behav. 2024;158:108302.
    13. Yadav G, Annappa B, Sachin DN. Abdominal multi-organ segmentation using federated learning. In: 2024 IEEE Region 10 Symposium (TENSYMP). 2024;1-7.
    14. Brisimi TS, Chen R, Mela T, Olshevsky A, Paschalidis IC, Shi W. Federated learning of predictive models from federated Electronic Health Records. Int J Med Inform. 2018 Apr;112:59-67. doi: 10.1016/j.ijmedinf.2018.01.007. Epub 2018 Jan 12. PMID: 29500022; PMCID: PMC5836813.
    15. Li T, Sanjabi M, Beirami A, Smith V. Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497. 2019.
    16. Choudhury O, Park Y, Salonidis T, Gkoulalas-Divanis A, Sylla I, Das AK. Predicting Adverse Drug Reactions on Distributed Health Data using Federated Learning. AMIA Annu Symp Proc. 2020 Mar 4;2019:313-322. PMID: 32308824; PMCID: PMC7153050.
    17. Rønn Hansen C, Price G, Field M, Sarup N, Zukauskaite R, Johansen J, Eriksen JG, Aly F, McPartlin A, Holloway L, Thwaites D, Brink C. Larynx cancer survival model developed through open-source federated learning. Radiother Oncol. 2022 Nov;176:179-186. doi: 10.1016/j.radonc.2022.09.023. Epub 2022 Oct 5. PMID: 36208652.
    18. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, Milchenko M, Xu W, Marcus D, Colen RR, Bakas S. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020 Jul 28;10(1):12598. doi: 10.1038/s41598-020-69250-1. PMID: 32724046; PMCID: PMC7387485.
    19. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F. Federated Learning for Healthcare Informatics. J Healthc Inform Res. 2021;5(1):1-19. doi: 10.1007/s41666-020-00082-4. Epub 2020 Nov 12. PMID: 33204939; PMCID: PMC7659898.
    20. Corti C, Cobanaj M, Dee EC, Criscitiello C, Tolaney SM, Celi LA, Curigliano G. Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care. Cancer Treat Rev. 2023 Jan;112:102498. doi: 10.1016/j.ctrv.2022.102498. Epub 2022 Dec 11. PMID: 36527795.
    21. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021 Apr;11(4):900-915. doi: 10.1158/2159-8290.CD-21-0090. PMID: 33811123; PMCID: PMC8034385.
    22. Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken). 2023 Feb;6(2):e1764. doi: 10.1002/cnr2.1764. Epub 2023 Jan 6. PMID: 36607830; PMCID: PMC9940009.
    23. Senthil Kumar K, Miskovic V, Blasiak A, Sundar R, Pedrocchi ALG, Pearson AT, Prelaj A, Ho D. Artificial Intelligence in Clinical Oncology: From Data to Digital Pathology and Treatment. Am Soc Clin Oncol Educ Book. 2023 May;43:e390084. doi: 10.1200/EDBK_390084. PMID: 37235822.
    24. Shreve JT, Khanani SA, Haddad TC. Artificial Intelligence in Oncology: Current Capabilities, Future Opportunities, and Ethical Considerations. Am Soc Clin Oncol Educ Book. 2022 Apr;42:1-10. doi: 10.1200/EDBK_350652. PMID: 35687826.
    25. Mitra S, Dey P. Fine-needle aspiration and core biopsy in the diagnosis of breast lesions: A comparison and review of the literature. Cytojournal. 2016 Aug 31;13:18. doi: 10.4103/1742-6413.189637. PMID: 27651820; PMCID: PMC5019018.
    26. McAllister CM, Stepanian JD. The impact of minimally invasive surgical techniques on early range of motion after primary total knee arthroplasty. J Arthroplasty. 2008 Jan;23(1):10-8. doi: 10.1016/j.arth.2007.01.011. PMID: 18165022.
    27. Darzi SA, Munz Y. The impact of minimally invasive surgical techniques. Annu Rev Med. 2004;55:223-37. doi: 10.1146/annurev.med.55.091902.105248. PMID: 14746519.
    28. Iannessi A, Bertrand AS, Peyrottes I, Thyss A, Machiavello JC, Liberatore M. One-bloc percutaneous large biopsy of soft-tissue tumours: feasibility study and possible indications. Clin Radiol. 2019 Aug;74(8):649.e11-649.e17. doi: 10.1016/j.crad.2019.05.004. Epub 2019 Jun 6. PMID: 31178068.
    29. Boese A, Wex C, Croner R, Liehr UB, Wendler JJ, Weigt J, Walles T, Vorwerk U, Lohmann CH, Friebe M, Illanes A. Endoscopic Imaging Technology Today. Diagnostics (Basel). 2022 May 18;12(5):1262. doi: 10.3390/diagnostics12051262. PMID: 35626417; PMCID: PMC9140648.
    30. Johnson KD, Laoveeravat P, Yee EU, Perisetti A, Thandassery RB, Tharian B. Endoscopic ultrasound guided liver biopsy: Recent evidence. World J Gastrointest Endosc. 2020 Mar 16;12(3):83-97. doi: 10.4253/wjge.v12.i3.83. PMID: 32218888; PMCID: PMC7085945.
    31. Pandey N, Hoilat GJ, John S. Liver biopsy. 2017.
    32. Frangioni JV. New technologies for human cancer imaging. J Clin Oncol. 2008 Aug 20;26(24):4012-21. doi: 10.1200/JCO.2007.14.3065. PMID: 18711192; PMCID: PMC2654310.
    33. García-Figueiras R, Baleato-González S, Padhani AR, Luna-Alcalá A, Vallejo-Casas JA, Sala E, Vilanova JC, Koh DM, Herranz-Carnero M, Vargas HA. How clinical imaging can assess cancer biology. Insights Imaging. 2019 Mar 4;10(1):28. doi: 10.1186/s13244-019-0703-0. PMID: 30830470; PMCID: PMC6399375.
    34. Perez Giraldo GS, Singer L, Cao T, Jamshidi P, Dixit K, Kontzialis M, Castellani R, Pytel P, Anadani N, Bevan CJ, Grebenciucova E, Balabanov R, Cohen BA, Graham EL. Differential Diagnosis of Tumor-like Brain Lesions. Neurol Clin Pract. 2023 Oct;13(5):e200182. doi: 10.1212/CPJ.0000000000200182. Epub 2023 Aug 30. PMID: 37664132; PMCID: PMC10468256.
    35. Huisman TA. Tumor-like lesions of the brain. Cancer Imaging. 2009 Oct 2;9 Spec No A(Special issue A):S10-3. doi: 10.1102/1470-7330.2009.9003. PMID: 19965288; PMCID: PMC2797474.
    36. Dean Deyle G. The role of MRI in musculoskeletal practice: a clinical perspective. J Man Manip Ther. 2011 Aug;19(3):152-61. doi: 10.1179/2042618611Y.0000000009. PMID: 22851878; PMCID: PMC3143009.
    37. Shah LM, Salzman KL. Imaging of spinal metastatic disease. Int J Surg Oncol. 2011;2011:769753. doi: 10.1155/2011/769753. Epub 2011 Nov 3. PMID: 22312523; PMCID: PMC3263660.
    38. Silverstein J, Post AL, Chien AJ, Olin R, Tsai KK, Ngo Z, Van Loon K. Multidisciplinary Management of Cancer During Pregnancy. JCO Oncol Pract. 2020 Sep;16(9):545-557. doi: 10.1200/OP.20.00077. PMID: 32910882.
    39. Sorouri K, Loren AW, Amant F, Partridge AH. Patient-Centered Care in the Management of Cancer During Pregnancy. Am Soc Clin Oncol Educ Book. 2023 May;43:e100037. doi: 10.1200/EDBK_100037. PMID: 37220323.
    40. Griffeth LK. Use of PET/CT scanning in cancer patients: technical and practical considerations. Proc (Bayl Univ Med Cent). 2005 Oct;18(4):321-30. doi: 10.1080/08998280.2005.11928089. PMID: 16252023; PMCID: PMC1255942.
    41. Mankoff DA, Katz SI. PET imaging for assessing tumor response to therapy. J Surg Oncol. 2018 Aug;118(2):362-373. doi: 10.1002/jso.25114. Epub 2018 Jun 24. PMID: 29938396.
    42. Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011 Feb;38(1):55-69. doi: 10.1053/j.seminoncol.2010.11.012. PMID: 21362516; PMCID: PMC3075495.
    43. Li R, Ravizzini GC, Gorin MA, Maurer T, Eiber M, Cooperberg MR, Alemozzaffar M, Tollefson MK, Delacroix SE, Chapin BF. The use of PET/CT in prostate cancer. Prostate Cancer Prostatic Dis. 2018 Apr;21(1):4-21. doi: 10.1038/s41391-017-0007-8. Epub 2017 Dec 11. PMID: 29230009.
    44. Deliu I, Cristina M, Dumitru G. Utility of tumor markers as a diagnostic tool. Curr Trends Nat Sci. 2018;7(14):272-5.
    45. Nagpal M, Singh S, Singh P, Chauhan P, Zaidi MA. Tumor markers: A diagnostic tool. Natl J Maxillofac Surg. 2016 Jan-Jun;7(1):17-20. doi: 10.4103/0975-5950.196135. PMID: 28163473; PMCID: PMC5242068.
    46. Desai S, Guddati AK. Carcinoembryonic Antigen, Carbohydrate Antigen 19-9, Cancer Antigen 125, Prostate-Specific Antigen and Other Cancer Markers: A Primer on Commonly Used Cancer Markers. World J Oncol. 2023 Feb;14(1):4-14. doi: 10.14740/wjon1425. Epub 2023 Feb 26. PMID: 36895994; PMCID: PMC9990734.
    47. Basu A, Seth S, Chauhan AK, Bansal N, Arora K, Mahaur A. Comparative study of tumor markers in patients with colorectal carcinoma before and after chemotherapy. Ann Transl Med. 2016 Feb;4(4):71. doi: 10.3978/j.issn.2305-5839.2016.02.02. PMID: 27004218; PMCID: PMC4779780.
    48. Sharma S. Tumor markers in clinical practice: General principles and guidelines. Indian J Med Paediatr Oncol. 2009 Jan;30(1):1-8. doi: 10.4103/0971-5851.56328. PMID: 20668599; PMCID: PMC2902207.
    49. Rosen RD, Sapra A. TNM classification. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2022.
    50. Sawaki M, Shien T, Iwata H. TNM classification of malignant tumors (Breast Cancer Study Group). Jpn J Clin Oncol. 2019 Mar 1;49(3):228-231. doi: 10.1093/jjco/hyy182. PMID: 30541035.
    51. Chen RJ, Lu MY, Wang J, Williamson DFK, Rodig SJ, Lindeman NI, Mahmood F. Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis. IEEE Trans Med Imaging. 2022 Apr;41(4):757-770. doi: 10.1109/TMI.2020.3021387. Epub 2022 Apr 1. PMID: 32881682; PMCID: PMC10339462.
    52. Tseng LJ, Matsuyama A, MacDonald-Dickinson V. Histology: The gold standard for diagnosis? Can Vet J. 2023 Apr;64(4):389-391. PMID: 37008634; PMCID: PMC10031787.
    53. Zeiser FA, da Costa CA, Roehe AV, da Rosa Righi R, Marques NMC. Breast cancer intelligent analysis of histopathological data: A systematic review. Appl Soft Comput. 2021;113:107886.
    54. Rashmi R, Prasad K, Udupa CBK. Breast histopathological image analysis using image processing techniques for diagnostic puposes: A methodological review. J Med Syst. 2021 Dec 3;46(1):7. doi: 10.1007/s10916-021-01786-9. PMID: 34860316; PMCID: PMC8642363.
    55. Dabeer S, Khan MM, Islam S. Cancer diagnosis in histopathological image: CNN based approach. Informatics Med Unlocked. 2019;16:100231.
    56. Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules. 2022 Jul 23;12(8):1021. doi: 10.3390/biom12081021. PMID: 35892331; PMCID: PMC9331210.
    57. Sokolenko AP, Imyanitov EN. Molecular Diagnostics in Clinical Oncology. Front Mol Biosci. 2018 Aug 27;5:76. doi: 10.3389/fmolb.2018.00076. PMID: 30211169; PMCID: PMC6119963.
    58. Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 2020 Jan 14;12(1):8. doi: 10.1186/s13073-019-0703-1. PMID: 31937368; PMCID: PMC6961404.
    59. Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. 2020 Mar 12;5(1):28. doi: 10.1038/s41392-020-0134-x. PMID: 32296047; PMCID: PMC7067809.
    60. Litton JK, Burstein HJ, Turner NC. Molecular Testing in Breast Cancer. Am Soc Clin Oncol Educ Book. 2019 Jan;39:e1-e7. doi: 10.1200/EDBK_237715. Epub 2019 May 17. PMID: 31099622.
    61. Tang S, Yuan K, Chen L. Molecular biomarkers, network biomarkers, and dynamic network biomarkers for diagnosis and prediction of rare diseases. Fundam Res. 2022 Aug 9;2(6):894-902. doi: 10.1016/j.fmre.2022.07.011. PMID: 38933388; PMCID: PMC11197705.
    62. El-Deiry WS, Goldberg RM, Lenz HJ, Shields AF, Gibney GT, Tan AR, Brown J, Eisenberg B, Heath EI, Phuphanich S, Kim E, Brenner AJ, Marshall JL. The current state of molecular testing in the treatment of patients with solid tumors, 2019. CA Cancer J Clin. 2019 Jul;69(4):305-343. doi: 10.3322/caac.21560. Epub 2019 May 22. PMID: 31116423; PMCID: PMC6767457.
    63. Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, Zhao J, Snowdon JL. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021 Jan;14(1):86-93. doi: 10.1111/cts.12884. Epub 2020 Oct 12. PMID: 32961010; PMCID: PMC7877825.
    64. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol. 2022 Jun 15;39(8):120. doi: 10.1007/s12032-022-01711-1. PMID: 35704152; PMCID: PMC9198206.
    65. Habehh H, Gohel S. Machine Learning in Healthcare. Curr Genomics. 2021 Dec 16;22(4):291-300. doi: 10.2174/1389202922666210705124359. PMID: 35273459; PMCID: PMC8822225.
    66. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model aggregation techniques in federated learning: A comprehensive survey. Future Gener Comput Syst. 2023.
    67. Kandati DR, Gadekallu TR. Federated learning approach for early detection of chest lesion caused by COVID-19 infection using particle swarm optimization. Electronics. 2023;12(3):710.
    68. Truong N, Sun K, Wang S, Guitton F, Guo Y. Privacy preservation in federated learning: An insightful survey from the GDPR perspective. Comput Secur. 2021;110:102402.
    69. Sandhu SS, Gorji HT, Tavakolian P, Tavakolian K, Akhbardeh A. Medical Imaging Applications of Federated Learning. Diagnostics (Basel). 2023 Oct 6;13(19):3140. doi: 10.3390/diagnostics13193140. PMID: 37835883; PMCID: PMC10572559.
    70. Sohan MF, Basalamah A. A systematic review on federated learning in medical image analysis. IEEE Access. 2023.
    71. Nazir S, Kaleem M. Federated Learning for Medical Image Analysis with Deep Neural Networks. Diagnostics (Basel). 2023 Apr 24;13(9):1532. doi: 10.3390/diagnostics13091532. PMID: 37174925; PMCID: PMC10177193.
    72. Padhy SK, Takkar B, Chawla R, Kumar A. Artificial intelligence in diabetic retinopathy: A natural step to the future. Indian J Ophthalmol. 2019 Jul;67(7):1004-1009. doi: 10.4103/ijo.IJO_1989_18. PMID: 31238395; PMCID: PMC6611318.
    73. Walskaar I, Tran MC, Catak FO. A practical implementation of medical privacy-preserving federated learning using multi-key homomorphic encryption and Flower framework. Cryptography. 2023;7(4):48.
    74. Rakhshan P. Breast cancer detection based on CNN and federated learning using embedded devices. 2023.
    75. Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast. 2020 Feb;49:25-32. doi: 10.1016/j.breast.2019.10.001. Epub 2019 Oct 11. PMID: 31677530; PMCID: PMC7375671.
    76. Zhu X, Wang J, Chen W, Sato K. Model compression and privacy preserving framework for federated learning. Future Gener Comput Syst. 2023;140:376-89.
    77. Li Y, Li Y, Xu H, Ren S. An adaptive communication-efficient federated learning to resist gradient-based reconstruction attacks. Secur Commun Netw. 2021;2021:1-16.
    78. Dasaradharami Reddy K, Srivastava G, Zhu Y, Supriya Y, Yenduri G, Victor N, et al. Federated Learning Using the Particle Swarm Optimization Model for the Early Detection of COVID-19. In: International Conference on Neural Information Processing; Nov 2023; Singapore: Springer Nature Singapore. 2023;425-36.

Similar Articles

Slip Resistance Evaluation of 10 Indoor Floor Surfaces
Cal Snow, Cody Hays, Sarah Girard, Lorri Birkenbuel, Daniel Autenrieth and David Gilkey
DOI10.61927/igmin199
Diagnostic Challenges in Pancreatic Tumors
Ionuţ Simion Coman, Elena Violeta Coman, Costin George Florea, Teodora Elena Tudose, Cosmin Burleanu, Anwar Erchid and Valentin Titus Grigorean
DOI10.61927/igmin185
×

Why Publish with IgMin Research?

Submit Your Article