
www.igminresearch.com

ISSN: 2995-8067

A Multidisciplinary
Open Access 
Journal

357

Pharmacology | Molecular Medicine | T O P I C ( S )

MEDICINE S U B J E C T

Abstract
Objectives: This study aims to investigate the causal link between the use of statins, a type of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 

reductase inhibitor, and the risk of developing malignant meningiomas, which are aggressive and recurrent tumors of the central nervous system with 
limited treatment options.

Methods: Using Mendelian Randomization (MR) analysis, the study explored the relationship between genetic variants related to the expression of 
lipid-lowering drug targets (HMGCR, PCSK9, NPC1L1, and APOB) and malignant meningiomas. The analysis utilized data from Genome-Wide Association 
Studies (GWAS) and expression quantitative trait loci (eQTL) databases, with a focus on the genetic homogeneity of the Finnish population. Instrumental 
variables for the MR analysis were derived from signi icant eQTLs for the mentioned drug targets.

Results: The MR analysis found a signi icant association between genetic variants linked to HMGCR inhibitor (statin) exposure and a reduced risk 
of malignant meningiomas. Speci ically, an increased expression of the HMGCR gene in the blood was associated with lower susceptibility to malignant 
meningiomas (Odds Ratio [OR] = 2.57, 95% Con idence Interval [CI] = 1.05 - 6.31; p = 0.039). No signi icant associations were observed for other lipid-
lowering drug targets.

Conclusion: Preliminary evidence suggests that statin use may lower the risk of developing malignant meningiomas, indicating a potential therapeutic 
bene it for managing this type of cancer. However, further research, including clinical trials, is necessary to con irm these indings and understand the 
mechanisms behind the protective effect of statins against malignant meningiomas.
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Introduction

Central nervous system tumors such as meningiomas 
are the most common [1]. The World Health Organization 
(WHO) categorizes meningiomas into Grades I, II, and 
III, with increasing grades associated with higher rates of 
occurrence and death. Meningiomas in grades II and III 
are distinguished by their unusual features and tendency to 
invade nearby tissues [2]. Approximately 80% of instances 
exhibit noncancerous histological features, which may be 
treated eff ectively with surgery, while the remaining 20% 
display cancerous histological attributes, increasing the 
risk of quick reappearance [3,4]. Adjunctive radiotherapy 

is frequently utilized to enhance local control, especially 
in malignant meningiomas. Yet, there is a void in eff ective 
pharmacological interventions. Meningiomas have not 
been successfully treated in several clinical trials [5,6]. 
Therefore, additional therapeutic strategies for malignant 
meningiomas are urgently needed.

As well as forming biological membranes, lipids serve as 
signaling molecules and energy sources. There are a number 
of biological processes that are infl uenced by cholesterol, its 
precursors, or metabolites, including cell immunity, post-
translational modifi cations of proteins, and cell signaling 
[7,8]. It is also well documented that cancer cells’ perpetual 
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growth is accompanied by an increased need for cholesterol, 
as many types of malignancies exhibit cholesterol-related 
metabolic problems [9,10]. Tumor growth and metastatic 
spread are caused by lipids that alter key processes such 
as the energy supply to tumor cells, the fl uidity of cell 
membranes, and the signaling in tumor cells, off ering a 
potential target for developing new treatments against 
metastatic cancer [11].

Lipid homeostasis is currently regulated by various 
lipid-lowering medications based on lipid metabolism 
processes, but their targets are diff erent. Common targets 
include 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-
CoA) reductase (HMGCR), PCSK9 proprotein convertase 
subtilisin/kexin family member (evolocumab and 
alirocumab), cholesterol transporter (NPC1L1, targeted 
by ezetimibe), and apolipoprotein B (ApoB, targeted by 
mipomersen). HMG-CoA reductase plays a crucial role 
as the enzyme that controls the speed of cholesterol and 
other isoprenoid production in the body. It speeds up 
the transformation of HMG-CoA into mevalonate, an 
essential stage in the production of cholesterol [12]. PCSK9, 
the ninth member of the proprotein convertase family, 
controls LDL cholesterol levels in the blood by interacting 
with the LDL receptor [13]. NPC1L1 plays a vital role in 
intestinal cholesterol absorption, promoting cholesterol 
uptake into absorptive cells of the small intestine through 
vesicular endocytosis [14]. ApoB is a component of several 
lipoproteins in the blood, including low-density and very 
low-density lipoproteins [15].

Mendelian Randomization (MR) analysis is a new and 
strong epidemiological method that uses genetic variations 
as unbiased instrumental variables to study the causal 
connections between exposures and disease outcomes. 
Taking advantage of the fact that genotypes are established 
at conception and typically not infl uenced by confounding 
factors, MR analysis provides impartial estimates [16]. 
Additionally, MR can predict drug effi  cacy and reveal the 
potential utility of targets [17]. This analysis method has 
found widespread application in the pharmaceutical fi eld. 
Wang, et al. employed this method to discover that novel 
hypoglycemic drugs could reduce the risk of cardiovascular 
diseases [18]. Ueda, et al. also used this approach to identify 
a link between targets for reducing uric acid and chronic 
kidney disease [19].

This research examines the connection between 
cholesterol-lowering medications and cancerous brain 
tumors using genetic analysis, providing fresh perspectives 
on how to prevent and treat these tumors.

Methodology

Study design

This study encompasses four types of lipid-lowering 

medications: inhibitors of HMGCR, PCSK9, NPC1L1, and 
APOB. An MR study comparing two samples was performed 
utilizing summary statistics from publicly accessible GWAS 
and eQTLs studies. Approval from appropriate institutional 
review boards was obtained for all studies, and participants 
provided informed consent.

Selection of genetic instruments

The eQTLs of the drug target genes (HMGCR, PCSK9, 
NPC1L1, and APOB) were used as substitutes to represent 
exposure to various lipid-lowering medications. Data on 
eQTL summary statistics were collected from either the 
eQTLGen database (https://www.eQTLGen.org/) or the 
GTEx V8 database (https://gtexportal.org/) (Supplement 
Table 1). Signifi cant associations (p<5.0×10^-8) were found 
between eQTLs with a minor allele frequency (MAF) > 1% 
and the expression of HMGCR and PCSK9 in blood, as well 
as NPC1L1 and APOB in subcutaneous adipose tissue. This 
was due to the lack of signifi cant eQTLs for NPC1L1 and 
APOB in blood or other tissues. Genetic instruments were 
generated by including only cis-eQTLs located within a 1Mb 
distance from the coding gene.

Additionally, in order to confi rm the connections 
identifi ed using eQTLs as tools, a diff erent method 
was utilized involving the selection of single nucleotide 
polymorphisms (SNPs) located within 100kb of each gene 
associated with LDL cholesterol levels, which refl ects 
exposure to medications that lower lipids at a signifi cant level 
across the entire genome (p < 5.0 × 10^-8). Variants were 
detected through analysis of data from the LDL cholesterol 
GWAS conducted by the Global Lipids Genetics Consortium 
(GLGC), involving 173,082 samples [20]. For HMGCR, 7 
SNPs within a 100kb range were selected as instrumental 
variables, 12 for PCSK9, 3 for NPC1L1 inhibitors, and 20 
for APOB. The threshold for linkage disequilibrium (R^2) 
of selected instrumental variable SNPs was set at 0.3 to 
maximize the strength of each drug’s instrumental variables.

Data sources

Data from Genome-Wide Association Studies (GWAS) on 
malignant meningiomas and coronary artery atherosclerosis 
were acquired from the FinnGen research initiative at 
https://r5.fi nngen.fi /.FinnGen, a collaboration between the 
public and private sectors, merges genetic information from 
both new and preexisting samples from biobanks in Finland 
with electronic health record data from health registries in 
Finland, with the goal of uncovering fresh perspectives on 
the genetic basis of diseases [21]. The included malignant 
meningioma dataset comprises 174,646 total samples, 
including 640 cases of malignant meningiomas and 174,006 
controls. The sample size for coronary artery atherosclerosis 
data was 218,792, including 23,363 cases of malignant 
meningiomas and 195,429 controls (Supplement Table 1).

https://www.igminresearch.com/articles/supplementary_files/igmin187-Supplementary-Tables.zip
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MR analysis

The summary data-based MR (SMR) method was 
utilized with eQTLs as instruments to estimate eff ects, 
examining the association between gene expression levels 
and outcomes of interest by analyzing summary data from 
GWAS and eQTL studies [22]. The process of aligning alleles 
and conducting analyses was carried out with the use of SMR 
software, specifi cally version 1.03, which can be found at 
https://cnsgenomics.com/software/smr/#Overview. Using 
genetic variants associated with LDL cholesterol levels 
as instruments, the IVW method in the TwoSampleMR 
package in R software version 4.1.0 estimated the impact of 
lipid-lowering medications on results.

Sensitivity analysis

To assess the eff ectiveness of SNPs as instruments, F 
statistics were utilized, including SNPs with an F statistic 
greater than 10 to reduce the impact of weak instrument 
bias [23]. Furthermore, the instrumental variables were 
validated through positive control analyses. In the study of 
eQTLs, the connection between specifi c target genes and 
LDL cholesterol levels was examined as a positive control 
experiment for the instrumental variables due to the fact 
that reducing LDL cholesterol levels is a key eff ect of lipid-
lowering drugs. For instrumental variables from the LDL 
cholesterol GWAS, a positive control study was conducted 
by examining the relationship between target genes and 
coronary artery atherosclerosis, given it is an indication for 
lipid-lowering medications.

The SMR method utilized the Heterogeneity in Dependent 
Instruments (HEIDI) to examine if the correlation between 
gene expression and outcomes was infl uenced by linkage 
disequilibrium, conducted within the SMR software [24]. 
A HEIDI test with a signifi cance level of p < 0.01 suggests 
that the relationship could be attributed to genetic linkage 
[25]. A single SNP could impact the expression of several 
genes, resulting in horizontal pleiotropy. Identifying 
nearby genes (within a 1Mb range) whose expression was 
signifi cantly linked to the genetic instrument variants was 
done to evaluate the risk of horizontal pleiotropy, followed 
by SMR analysis to investigate the potential relationship 
between the expression of these genes and the outcomes of 
malignant meningiomas.

Cochran’s Q test was utilized to evaluate heterogeneity 
in the IVW-MR method, with heterogeneity indicated by a 
p - value < 0.05 [19]. MR-Egger regression and MR-PRESSO 
analysis were used to assess possible horizontal pleiotropy 
among the SNPs utilized as instrumental variables. The 
intercept in MR-Egger regression acts as a signal for 
directional pleiotropy, with a p - value < 0.05 indicating the 
existence of pleiotropy [26]. The MR-PRESSO analysis is 

capable of detecting pleiotropic anomalies, where a Global 
test p - value < 0.05 suggests the existence of pleiotropy 
and outliers [27]. All these analyses were implemented in R 
software version 4.1.0.

Results

Genetic Instrument Selection and Outcomes with 
COVID-19.

From the eQTLGen or GTEx databases, a total of 921, 
24, 11, and 161 cis-eQTLs were identifi ed for the drug target 
genes HMGCR, PCSK9, NPC1L1, and APOB, respectively. 
The primary cis-eQTL SNP for each gene targeted by the 
drug was chosen as the genetic tool (Supplement Table 2).
7, 12, 3, and 20 SNPs were chosen for HMGCR, PCSK9, 
NPC1L1, and APOB from the summary data of the 
LDL-cholesterol level GWAS conducted by the Global 
Lipid Genetics Consortium (Supplement Table 3). The 
F statistics for all instrumental variables exceeded 20, 
indicating a low likelihood of bias from weak instruments 
in our analysis (Supplement Tables 2,3). Positive 
control experiments demonstrated notable connections 
between individual drug exposure and LDL cholesterol 
levels by utilizing eQTLs as instrumental variables 
(Supplement Table 5). Additionally, the association 
between drug exposure and coronary artery atherosclerosis 
was confi rmed by LDL cholesterol GWAS, reinforcing the 
reliability of the chosen genetic tools (Supplement Table 6).

Main analysis

Findings from SMR analysis indicated a potential 
link between elevated levels of the HMGCR gene in the 
bloodstream (comparable to a one standard deviation 
increase) and vulnerability to malignant meningiomas 
(Odds Ratio [OR] = 2.70, 95% Confi dence Interval 
[CI] = 1.07-6.81; p = 0.035), suggesting that inhibiting 
HMGCR could lower the chances of developing malignant 
meningiomas (Figure 1 and Supplement Table 2). There 
were no notable connections discovered between the levels 
of PCSK9, NPCIL1, APOB, and malignant meningiomas.

IVW-MR analysis revealed a connection between LDL 
cholesterol controlled by HMGCR and the likelihood of 
malignant meningiomas (OR = 2.57, 95%CI = 1.05 - 6.31; 
p = 0.039), reinforcing the idea that HMGCR inhibitors 
could off er protection against malignant meningiomas 
(Figure 2 and Supplement Table 4). Strong evidence was 
found linking PCSK9-mediated LDL cholesterol with the risk 
of malignant meningiomas, with an odds ratio of 2.00 and a 
95% confi dence interval of 1.24 - 3.19, resulting in a p - value 
of 0.004. No evidence was provided by IVW-MR analysis 
for an association between NPC1L1 and APOB mediated 
LDL cholesterol and outcomes of malignant meningiomas.

https://www.igminresearch.com/articles/supplementary_files/igmin187-Supplementary-Tables.zip
https://www.igminresearch.com/articles/supplementary_files/igmin187-Supplementary-Tables.zip
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https://www.igminresearch.com/articles/supplementary_files/igmin187-Supplementary-Tables.zip
https://www.igminresearch.com/articles/supplementary_files/igmin187-Supplementary-Tables.zip
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Sensitivity analysis

For SMR analysis, HEIDI tests indicated that the 
observed outcomes were not due to inter-gene associations 
(p > 0.01). A more in-depth analysis was performed 
to investigate horizontal pleiotropy by examining the 
expression of neighboring genes linked to the top SNP 
associated with HMGCR and the prognosis of malignant 
meningiomas. Six genes, such as HMGCR, were found to have 
expression levels correlated with the instrumental variable 
(Supplement Table 7). Just three genes had eQTLs that 
reached genome-wide signifi cance (p < 5.0 × 10^-8). Out of 
the three genes, only HMGCR expression showed a signifi cant 
correlation with the outcomes of malignant meningiomas, 
indicating a limited impact of horizontal pleiotropy on the 
observed connections (Supplement Table 8).

Cochran’s Q test for the IVW-MR analysis did not detect 
any heterogeneity among the reported results (p > 0.05; 
Supplement Table 4). The intercept values obtained from 
MR-Egger regression and MR-PRESSO analysis did not 
show statistical signifi cance (p > 0.05; Supplement Table 4),
suggesting a lack of pleiotropy in general.

Discussion

Malignant meningiomas, characterized by their 
malignant tumor traits such as recurrent local recurrence 
and potential extracranial metastasis, present signifi cant 
challenges in treatment. Caroline et al. recently reported 
that the frequency of primary malignant brain tumors is 
around 7 cases per 100,000 people [28]. Common therapies 
for malignant meningiomas consist of surgery to remove 

the tumor, radiosurgery after the operation, and the use of 
chemotherapy [29-31]. Surgical removal is the preferred 
and most eff ective method, yet postoperative peritumoral 
edema and severe brain edema can lead to life-threatening 
conditions such as brain herniation [32]. Postoperative 
radiation therapy is advocated by some, though not all 
patients benefi t from it [33, 34].

Due to the limited availability of reliable randomized 
controlled trial evidence backing the effi  cacy of lipid-
lowering medications and the diffi  culties in carrying 
out extensive randomized controlled trials, Mendelian 
Randomization (MR) analysis provides a practical and 
precise epidemiological approach for studying the causal 
connections between exposure variables and results 
through the use of public databases. Our study provides 
evidence that inhibitors of HMGCR may reduce the risk of 
meningioma, off ering a reference for patients using lipid-
lowering medications.

This study investigated how the risk of meningiomas 
is aff ected by four diff erent lipid-lowering drugs: HMGCR 
inhibitors, PCSK9 inhibitors, NPC1L1 inhibitors, and 
APOB inhibitors. We found potential evidence suggesting 
that HMGCR inhibitors could lower the risk of malignant 
meningiomas. No signifi cant associations were observed 
for PCSK9, NPC1L1, and APOB expressions in relation to 
malignant meningiomas.SMR analysis fi ndings indicated a 
potential link between elevated HMGCR expression in the 
bloodstream and vulnerability to malignant meningiomas, 
with an odds ratio of 2.70 and a 95% confi dence interval 
of 1.07 - 6.81, suggesting a possible protective impact 
of HMGCR inhibitors. The IVW-MR analysis provided 

Figure 1: Using summary data, a Mendelian Randomization analysis was conducted to investigate the link between gene expression levels of HMGCR, 
PCSK9, NPC1L1, and APOB and malignant meningiomas.

Figure 2: Results from the Inverse-Variance Weighted (IVW) method in Figure 2 show the connection between LDL cholesterol and malignant meningiomas 
through HMGCR, PCSK9, NPC1L1, and APOB genes.

https://www.igminresearch.com/articles/supplementary_files/igmin187-Supplementary-Tables.zip
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additional evidence for the potential benefi t of statins in 
reducing the risk of malignant meningiomas (OR = 2.57, 
95%CI = 1.05 - 6.31; p = 0.039).

Compared to the development of new pharmaceuticals, 
repurposing existing drugs off ers a more economical and 
time-effi  cient approach. Due to the signifi cant eff ects of 
statins in lowering Low-Density Lipoprotein Cholesterol, 
they are widely used in various diseases related to lipid 
metabolism, especially cardiovascular diseases [35,36]. 
Abundant evidence supports that the therapeutic 
advantages of statin treatment signifi cantly surpass any real 
or perceived risks [37,38]. Due to their expiration of patent 
protections and consequent low overall costs, statins emerge 
as viable candidates for repurposing. Among the plethora of 
prescription drugs, statins draw considerable attention for 
their multifaceted benefi ts, including their ability to reduce 
serum cholesterol levels, their anti-infl ammatory and 
immunomodulatory properties, and their antithrombotic 
actions. Together, these abilities could be essential in 
reducing the likelihood of tumor formation [39]. The 
potential of statins to mitigate the risk of meningioma has 
been the subject of divergent fi ndings in prior research. For 
instance, an in vitro study by Gehring, et al. revealed that 
statins exert a cytotoxic eff ect on meningioma cells, hinting 
at their possible application in treating meningiomas [40]. 
Conversely, in a case-control study conducted by Seliger, et 
al. no connection was found between the use of statins and 
the risk of meningioma [41]. Acknowledging the challenges 
previous studies faced in eliminating confounding factors and 
drawing reliable conclusions, our Mendelian randomization 
analysis introduces a novel perspective and methodology. 
Using genetic variations as instrumental variables allows 
for a more accurate assessment of the causal link between 
drug targets and disease, confi rming the eff ectiveness of 
statins in reducing the likelihood of malignant meningiomas.

Our study is not without limitations. The limitations of 
utilizing genetic variations to examine the impacts of lipid-
lowering medications are evident, given the minimal genetic 
infl uence that emerges gradually, contrasting with the 
more pronounced eff ects of drug treatments within distinct 
time frames. Therefore, analyzing drug-target interactions 
may not accurately refl ect the immediate impact of lipid-
lowering medications. Secondly, our MR analysis might 
be limited by low statistical power, as evidenced by the 
confi dence intervals of the MR estimates. Thirdly, genetic 
variants used to demonstrate exposure could introduce bias 
into the MR results through pleiotropy. Furthermore, as this 
research relied on information gathered from a European 
demographic, the fi ndings may not be generalizable to 
other racial groups. Fifthly, the analysis did not consider 
interactions between genetic variants and targeted drugs. 
Lastly, this analysis only revealed the precise eff ects of 

drug use, neglecting the non-target consequences of related 
medications.

The study used eQTLs for drug target genes (HMGCR, 
PCSK9, NPC1L1, and APOB) as substitutes to represent 
exposure to lipid-lowering drugs. eQTL analysis, by 
examining the relationship between genomic variations 
and gene expression intensity across a large sample size, 
emerges as a crucial approach to uncovering the functional 
impact of genomic variations on genes from a genome-
wide perspective. It serves as an essential tool for revealing 
the relationships between genetic variants, genes, and 
phenotypes, where improving eQTL detection effi  ciency 
is benefi cial for discovering new regulatory elements and 
target genes, playing a signifi cant role in understanding 
genetic regulatory mechanisms [30]. The SMR method 
is used with eQTLs as instruments to estimate eff ects, 
examining the connection between gene expression levels 
and outcomes by analyzing summary data from GWAS and 
eQTL studies [16].

To sum up, this study used genetic markers linked to 
HMGCR levels or HMGCR-controlled LDL cholesterol 
as proxies for statin use and found that HMGCR blockers 
could potentially lower the chances of developing malignant 
meningiomas.MR studies, as a genetic epidemiological 
approach, have the ability to address the constraints of 
conventional observational studies. In upcoming clinical 
trials focused on lowering the risk of meningiomas, there 
may be a preference for statins, representing a notable 
advancement in repurposing current drugs for novel 
therapeutic uses.

Conclusion

In our research, we employed Mendelian randomization 
to examine how lipid-lowering medications, such as statins, 
impact the likelihood of developing malignant meningiomas. 
The results indicate that statins could provide a safeguarding 
benefi t against this type of cancer. By leveraging genetic 
variants as instrumental variables for statin exposure, we 
provide new insights that could lead to repurposing existing 
medications for the prevention of malignant meningiomas. 
Despite certain limitations, such as the potential for ethnic 
variability in genetic impacts, these results underscore 
the value of genetic epidemiology in identifying new 
therapeutic strategies and highlight the potential of statins 
as a preventive measure against malignant meningiomas in 
future clinical trials.
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