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Abstract
In materials science, the integrity and completeness of datasets are critical for robust predictive modeling. Unfortunately, material datasets frequently 

contain missing values due to factors such as measurement errors, data non-availability, or experimental limitations, which can signiϐicantly undermine 
the accuracy of property predictions. To tackle this challenge, we introduce an optimized K-Nearest Neighbors (KNN) imputation method, augmented with 
Deep Neural Network (DNN) modeling, to enhance the accuracy of predicting material properties. Our study compares the performance of our Enhanced 
KNN method against traditional imputation techniques—mean imputation and Multiple Imputation by Chained Equations (MICE). The results indicate 
that our Enhanced KNN method achieves a superior R² score of 0.973, which represents a signiϐicant improvement of 0.227 over Mean imputation, 0.141 
over MICE, and 0.044 over KNN imputation. This enhancement not only boosts the data integrity but also preserves the statistical characteristics essential 
for reliable predictions in materials science.
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Introduction

The robust analysis of material properties signifi cantly 
depends on the quality and completeness of the dataset used. 
However, material datasets often contain missing values 
due to various reasons such as measurement errors, non-
availability of data, or experimental limitations, which can 
severely compromise the accuracy of subsequent analyses. 
Recent advancements in imputation techniques have shown 
promising results in addressing this issue by reconstructing 
the missing entries, thus enabling more accurate and 
reliable predictions of material properties [1,2]. Among 
these techniques, the K-Nearest Neighbors (KNN) method 
has been particularly noted for its eff ectiveness in handling 
numerical datasets typical of material science [3].

Enhanced KNN imputation techniques, which involve 
optimizing the parameters of the KNN algorithm, off er 
improved data integrity by minimizing the bias introduced 
during the imputation process. Research by [4] illustrates 
that optimized KNN techniques outperform standard 
imputation methods in terms of preserving the statistical 
characteristics of the original data. Furthermore, the 
integration of imputed datasets with machine learning 
models, specifi cally Deep Neural Networks (DNN), has 

been increasingly explored for predicting complex material 
properties with high accuracy [5,6]. This paper aims 
to demonstrate the eff ectiveness of an optimized KNN 
imputation technique combined with DNN modeling in 
enhancing the prediction accuracy of material properties. 
Through rigorous testing and evaluation, including 
comparisons to other common imputation methods such 
as mean imputation and Multiple Imputation by Chained 
Equations (MICE), this study highlights the superiority 
of the enhanced KNN method in dealing with incomplete 
material datasets [7,8].

Recent studies have further validated the eff ectiveness 
of KNN imputation methods in various scientifi c domains. 
For example, in [9] authors explored KNN imputation 
in healthcare data, demonstrating its superiority over 
traditional methods like mean imputation in maintaining 
data integrity and improving predictive accuracy. Similarly, 
another study [10] proposed an iterative KNN method that 
utilizes deep neural networks to optimize the imputation 
process, resulting in higher accuracy across multiple 
datasets. These advancements underscore the potential 
of optimized KNN techniques to enhance the quality of 
imputed data in material science, thereby facilitating more 
reliable and accurate analyses.

https://crossmark.crossref.org/dialog/?doi=10.61927/igmin197&domain=pdf&date_stamp=2024-06-13
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Moreover, hybrid imputation techniques that combine 
KNN with other algorithms, such as fuzzy c-means clustering 
and iterative imputation, have shown promising results in 
handling complex datasets with high dimensionality. For 
instance, a study by [11] introduced a hybrid imputation 
method integrating KNN and iterative imputation, which 
signifi cantly improved the imputation accuracy and 
computational effi  ciency for large datasets. Such hybrid 
approaches not only leverage the strengths of individual 
algorithms but also mitigate their limitations, off ering 
a robust solution for handling missing data in material 
datasets. As the fi eld progresses, the integration of advanced 
imputation techniques with machine learning models like 
DNN is expected to drive further improvements in the 
prediction of material properties, ultimately advancing the 
frontiers of material science research.

Related work

The challenge of handling missing data in material 
science datasets has been extensively addressed through 
various imputation techniques, each off ering distinct 
advantages and limitations. Traditional methods such as 
mean imputation and median imputation are simple and 
easy to implement but often fail to preserve the intrinsic 
data variability and can introduce signifi cant bias [12,13]. 
More advanced statistical methods like Multiple Imputation 
by Chained Equations (MICE) have been explored to 
provide better approximations by considering the 
multivariate nature of the data [14]. However, these methods 
can be computationally intensive and may not always 
capture the complex relationships inherent in material 
science datasets [15,16].

Among the more sophisticated techniques, K-Nearest 
Neighbors (KNN) imputation has gained popularity due to 
its simplicity and eff ectiveness in dealing with numerical 
datasets [17,18]. KNN imputation operates by fi nding the 
‘k’ nearest neighbors for a data point with missing values 
and imputing the missing entries based on the values of 
these neighbors [19]. Studies such as those by [20,21] have 
demonstrated the utility of KNN in biological datasets, 
paving the way for its application in material science. Recent 
advancements have focused on optimizing KNN parameters, 
such as the number of neighbors (k) and the distance metric, 
to improve imputation accuracy and maintain the statistical 
properties of the original data [22,23].

Furthermore, hybrid imputation techniques that 
combine KNN with other algorithms have shown promise in 
addressing the limitations of standalone KNN methods. For 
example, fuzzy c-means clustering has been integrated with 
KNN to enhance imputation in high-dimensional datasets, 
as explored by [24]. Similarly, iterative KNN imputation 
methods, which repeatedly apply KNN imputation to refi ne 

the missing values, have been proposed to improve accuracy 
and convergence [25]. These hybrid approaches not only 
leverage the strengths of individual algorithms but also 
mitigate their weaknesses, off ering a more robust solution 
for handling missing data in complex material datasets [26].

In addition to improvements in imputation techniques, 
the integration of imputed datasets with machine learning 
models has been an area of signifi cant interest. Deep Neural 
Networks (DNNs) have shown remarkable success in 
predicting material properties from complete datasets, and 
recent studies have extended their application to imputed 
datasets [27,28]. For instance [29], demonstrated that using 
KNN-imputed data as input to DNNs resulted in superior 
prediction accuracy for mechanical properties of composite 
materials compared to using raw or mean-imputed data. 
This synergy between advanced imputation methods and 
machine learning models underscores the potential of 
such integrative approaches in enhancing the predictive 
capabilities of material property models [30].

The eff ectiveness of these advanced imputation techniques 
is further evidenced by comparative studies. Johnston, et al. 
[31] conducted a comprehensive comparison of imputation 
methods, including KNN, MICE, and Bayesian imputation, 
highlighting the superior performance of optimized KNN in 
preserving data integrity and improving predictive accuracy. 
Similarly, research by [32] and [33] supports the superiority 
of KNN and its variants over traditional imputation methods 
in various applications, including healthcare and genomics, 
reinforcing its applicability to material science. As the fi eld 
evolves, continued advancements in imputation techniques 
and their integration with machine learning are expected 
to further drive the accuracy and reliability of material 
property predictions.

Problem statement

Incomplete datasets are a signifi cant challenge in the 
fi eld of materials science, leading to potential biases and 
inaccuracies in the prediction of material properties. 
Traditional imputation methods often fail to adequately 
capture the complex relationships and patterns inherent 
in high-dimensional data typical of this domain. There is 
a critical need for an advanced imputation method that 
can eff ectively address the missing data problem while 
preserving the underlying data structure, thereby facilitating 
more accurate and reliable predictive modeling.

Proposed methodology

The methodology section outlines the development and 
implementation of the Enhanced Optimal KNN Imputer for 
handling missing data in a dataset comprising 990 records, 
as depicted in Figure 1. The process starts with identifying 
the indices of the missing values and replacing them with 
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placeholders. A Distance Matrix is then created, which is 
crucial for the KNN algorithm to function eff ectively by 
identifying the nearest neighbors based on their similarity.

The KNN imputation is performed with an enhanced 
technique that not only uses the standard KNN algorithm 
but also incorporates a decision tree model for better 
prediction of missing values. The imputation process 
includes hyperparameter tuning using a grid search 
strategy to fi nd the optimal number of neighbors and the 
most appropriate distance metric. The tuning is validated by 
verifying if additional missing values can still be imputed, 
ensuring all data points are eff ectively addressed.

Post-imputation, the dataset undergoes preprocessing 
to ensure it is suitable for training without any residual 
missing values. The complete dataset is then split into 
training and validation sets. The training data is used to 
develop a Deep Neural Network (DNN), which is designed 
to predict material properties such as density. The DNN 
architecture includes multiple hidden layers, and the 
activation function is specifi cally chosen to suit continuous 
data output. The network is trained over several iterations 
to optimize the weights and minimize the prediction error, 
which is quantitatively evaluated using the Mean Squared 
Error (MSE) and Mean Absolute Percentage Error (MAPE) 
metrics.

The eff ectiveness of the proposed imputation model is 
further analyzed through a comparative analysis using a 
k-Nearest Neighbors (KNN) imputed data and measures 
of central tendency imputed data. The comparison focuses 
on the ability to predict material properties accurately, 
highlighting the effi  ciency and accuracy of the DNN model 
developed from the imputed dataset.

Methodology formulation

Detailed formulation for data preparation and 
imputation, DNN training, and model evaluation is given in 
this section.

Data preparation and missing value imputation

Let 𝑋∈𝑅𝑛×𝑚 be the dataset with nn records and mm 
features, where some elements of XX are missing.

1. K-Nearest Neighbors (KNN) imputer:

• Defi ne the set of observed data points: 𝑋𝑜𝑏𝑠= {(𝑥𝑖, 𝑥𝑗) ∣ 𝑥𝑖𝑗 is observed}.

• Defi ne the set of missing data points: 𝑋𝑚𝑖𝑠= {(𝑥𝑖, 𝑥𝑗) ∣ 𝑥𝑖𝑗 
is missing}.

• For each missing value 𝑥𝑖𝑗∈𝑋𝑚𝑖𝑠:
• Compute the distance between 𝑥𝑖𝑗 and all observed 
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Figure 1: A detailed Framework of the proposed methodology for missing values imputation.
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points 𝑥𝑘𝑗∈𝑋𝑜𝑏𝑠 using a distance metric 𝑑(⋅,⋅),, such as 
Euclidean distance: 

   2,
1

m
d x x x xij kj il kl

l
 



• Identify the k-nearest neighbors of 𝑥𝑖𝑗.
• Impute the missing value 𝑥𝑖𝑗 as the weighted average 

of its k-nearest neighbors:
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• Where Nk is the set of indices of the k-nearest 
neighbors and 𝑤𝑙 is the weight associated with the 𝑙-th 
neighbor.

2. Hyperparameter tuning: Hyperparameter 
tuning for the KNN imputation model is conducted 
using a grid search strategy, which involves defi ning a 
comprehensive grid of possible values for the number of 
neighbors 𝑘 and the distance metrics (e.g., Euclidean). The 
choice of these parameters is critical as they signifi cantly 
impact the accuracy of the imputation.

• Defi ning the parameter grid: The grid comprises 
a range of values for 𝑘 typically varying from 1 to 20 
to capture diff erent degrees of locality in the data. 
Distance metrics included in the grid are Euclidean, 
which is sensitive to magnitudes and works well with 
less complex data, and Manhattan, which is better for 
high-dimensional data as it captures diff erences in 
individual dimensions eff ectively.

• Grid search implementation: The grid search 
is implemented by iterating over each combination 
of 𝑘 and distance metric. For each combination, 
the KNN model performance is evaluated using a 
cross-validation approach specifi cally designed for 
imputation tasks. We utilize a k-fold cross-validation, 
where the dataset is split into 𝑘 subsets. In each fold, 
one subset is used as the test set (validation set in this 
context), and the remaining k−1 subsets are used as 
the training set.

• Model performance evaluation: Model 
performance for each parameter combination is 
evaluated using the Mean Squared Error on Cross-
Validation (MSECV), calculated as: 

 21 1

1
ˆ

n fold
MSE xcv ij ijn Vi i Vifold i

x  
 

Where 𝑉𝑖 represents the set of validation indices in the 𝑖-th 
fold, xij the actual values, and x̂ij  the imputed values.

Selection criteria for optimal parameters: The 
optimal set of parameters is selected based on the lowest 
MSECV, which indicates the most accurate imputation. This 
method ensures that the chosen hyperparameters generalize 
well across diff erent subsets of the dataset and result in the 
most reliable imputation.

By following this detailed grid search and evaluation 
strategy, we ensure that the KNN model is fi nely tuned for the 
specifi c characteristics of our dataset, thus maximizing the 
accuracy and eff ectiveness of the missing data imputation 
process.

Deep Neural Network (DNN) training

Let 𝑋𝑡𝑟𝑎𝑖𝑛 be the imputed dataset used for training the 
DNN, with corresponding target values 𝑦.

1. DNN Architecture:

• Defi ne a neural network with L layers, where each 
layer l has hl hidden units.

• Activation function for each hidden unit in layer l is 𝜎𝑙 (⋅), which is applied to the linear combination of 
inputs from the previous layer.

• For layer l

        1l l l l
z W a bl


  

• Where, z(l) is the output of the l-th layer. a(l−1) is the 
activation from the previous layer. 𝑊(𝑙) and 𝑏(𝑙) are the 
weights and biases of the 𝑙-th layer.

2. Output layer:

• The fi nal output layer produces the predicted values 

     ˆ
1

ˆ:
LL L
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
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3. Loss function:

• The loss function used is the Mean Squared Error 
(MSE): 

 21

1
ˆ

n
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4. Training process:

• Minimize the MSE by adjusting the weights W and 
biases b through backpropagation and gradient 
descent:

   
 


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

MSEl l
W W l

W

•     Where 𝜂 is the learning rate.
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5. Model evaluation:

• Train-test split: Split the imputed dataset 𝑋𝑖𝑚𝑝 into 
training 𝑋𝑡𝑟𝑎𝑖𝑛 and testing 𝑋𝑡𝑒𝑠𝑡 sets.

• Performance evaluation: Evaluate the perfor-
mance of the trained DNN on the test set using MSE:

 21
, ˆ ,

1

ntest
MSE ytest test i test i

ist
y

nte
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

By implementing the above steps, the Enhanced KNN 
Imputer will eff ectively handle missing values, and the 
optimized DNN will provide accurate predictions for 
material properties based on the imputed dataset.

Results

The results in Figure 2 illustrate the eff ectiveness of the 
Enhanced KNN imputation method compared to traditional 
techniques, specifi cally Mean, MICE, and standard KNN. 
The Mean imputation method, with an R2 score of 0.746, 
shows the lowest predictive accuracy, indicating that 
simply replacing missing values with the mean of observed 
values does not eff ectively capture the data’s underlying 
distribution. The MICE method, which achieves an R2 
score of 0.832, off ers an improvement by using multiple 
imputations with chained equations, thereby considering 
relationships between variables more eff ectively. However, 
this method still falls short compared to KNN-based 
approaches.

The standard KNN imputation method, with an R2 
score of 0.929, signifi cantly improves predictive accuracy 
by using the values of nearest neighbors to fi ll in missing 
data, leveraging the local structure of the data. However, 
the Enhanced KNN method achieves the highest R2 score of 

0.973, showcasing its superior performance. This suggests 
that enhancements to the standard KNN algorithm, such 
as optimized distance metrics and better handling of 
data sparsity, result in signifi cantly improved imputation 
accuracy. Overall, the Enhanced KNN method demonstrates 
a superior ability to maintain data integrity and provide 
more accurate predictions, making it the most eff ective 
imputation technique among those compared.

Discussion

Our study focuses on improving the accuracy of 
data imputation in material science datasets using the 
Enhanced K-Nearest Neighbors (KNN) method. The results 
demonstrate that our proposed model achieves a high 
R² score of 0.973, indicating a substantial improvement 
over traditional imputation technique. Specifi cally, the 
Enhanced KNN method shows a signifi cant increase in 
the R² score compared to Mean imputation (R² = 0.746), 
MICE (R² = 0.832), and standard KNN (R² = 0.929). These 
improvements highlight the method’s capability to handle 
missing data more eff ectively, leading to more reliable 
datasets for training machine learning models. Enhanced 
dataset accuracy translates directly into better performance 
of predictive models, particularly in the context of material 
science where precise data is crucial for research and 
industrial applications.

To thoroughly evaluate the eff ectiveness of our model, 
we adopted methodologies similar to those presented in 
several noteworthy studies and applied these techniques 
to our dataset in material science. This approach allowed 
us to directly compare the performance of our model with 
established works in the fi eld. Table 1 provides a comparative 
analysis of our proposed model against existing research, 

Figure 2: Comparative analysis of the imputation models in terms of R2 score.
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detailing the objectives, models employed, enhancements 
in R² scores, and potential limitations of each study. 
This comprehensive comparison not only underscores 
the advancements our model introduces in imputation 
accuracy but also highlights areas for further validation and 
refi nement.

Despite the promising results, our study has several 
limitations. Firstly, the applicability of the Enhanced KNN 
method needs validation across diverse datasets to ensure 
its robustness and generalizability. Secondly, while the 
method shows substantial improvement in R² scores, it 
may require signifi cant computational resources for larger 
datasets, similar to other advanced imputation techniques.

Conclusion

The study provides a detailed quantitative analysis of the 
performance improvements achieved with the Enhanced 
KNN imputation method. Specifi cally, this method achieves 
a high R2 score of 0.973, demonstrating a substantial 
improvement over traditional imputation technique. 
Compared to the Mean imputation’s R2 score of 0.746, the 
Enhanced KNN method shows an increase of 0.227. Against 
the MICE method’s R2 score of 0.832, it improves by 0.141, 
and it surpasses the standard KNN method’s score of 0.929 
by 0.044. These signifi cant enhancements in imputation 
accuracy translate directly into more reliable datasets for 
training machine learning models. With a more accurate 
and complete dataset, DNN models can achieve higher 
predictive performance, leading to better generalization and 
precision in their outputs. This is particularly signifi cant 
for materials science, where accurate predictions of 
material properties are crucial for research and industrial 
applications. The Enhanced KNN method, therefore, not 
only addresses the issue of missing data more eff ectively but 
also signifi cantly boosts the overall performance and utility 
of predictive models, facilitating advancements in material 
design and innovation.
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