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Abstract
When a Maxwellian distribution is assumed for the distribution function in the BGK-type modelled BE, it will give rise to the Euler equations if it is 

the ϐirst-order approximation in the Chapman-Enskog method. Then the second-order equations will yield the N-S equations. Most LBM developed to 
date are formulated based on the second-order equations. Consequently, the assumption of a ϐlow Mach number M << 1 is inherent in this formulation. 
This approach creates an unnecessary restriction on the LBM that should be avoided if possible. An alternative approach is to formulate a new LBM by 
considering an equilibrium distribution function where the ϐirst-order approximations give rise to the N-S equations. Adopting this approach, a new LBM 
has been formulated. This new LBM gives reliable results when applied to simulate aeroacoustics, incompressible ϐlows, and compressible ϐlows with and 
without shocks. Good agreement with measurements and numerical data derived from DAS/DNA calculations is obtained.

Lattice Boltzmann Method 
without Invoking the M << 1 
Assumption
SO Ronald*
RMC So Department of Mechanical Engineering, The Hong Kong Polytechnic University, 
Hung Hom, Kowloon, HKSAR, PRC, Hong Kong

*Correspondence: SO Ronald, RMC So Department of Mechanical Engineering, The 
Hong Kong Polytechnic University, Hung Hom, Kowloon, HKSAR, PRC, Hong Kong, 
Email: ronald.so@polyu.edu.hk

Review Article

Nomenclature

BE: Boltzmann Equation; BGK: Bhatnagar, Gross and 
Krook; cp: Speciϐic Heat of Fluid; D: Dimension of the Problem; 
DAS: Direct Aeroacoustics Simulation; DNS: Direct Numerical 
Simulation; DT: Translational Degree-of-freedom; DR: 
Rotational Degree-of-freedom; e: Internal Energy of Fluid; et: 
Total Energy; f: Dimensionless Particle Distribution Function; f 
eq: Equilibrium Distribution Function; Kn: Knudsen number; L: 
Characteristic Length Scale; LBM: lattice Boltzmann Method; 
M: Mach Number; MBE: Modelled Boltzmann Equation; N-S: 
Navier-Stokes; p: Pressure; Pr: Prandtl Number; qi: Heat Flux 
Vector; R: Universal Gas Constant; Re: Reynolds Number; 
SRT: Single-relaxation-time; T: Temperature; t: Time; U: 
Characteristic Velocity Scale; u: Velocity Along x-direction; v: 
Velocity Along y-direction; WCUB: Wang-Chang, Uhlenbeck, 
and DeBoer; x: x-coordinate; y: y-coordinate

Symbols

α: Lattice Velocity Index; γ: Speciϐic Heat Ratio; κ: 
Coefϐicient of Thermal Conductivity; μ: Coefϐicient of Viscosity; 
ξ: Dimensionless Particle Velocity Vector; ρ: Fluid Density; σij: 

Viscous Stress Tensor; τ: Particle Collision Relaxation Time or 
Non-dimensional Relaxation Time; τo: Mesoscopic Time Scale; 
τιj: Stress Tensor

Superscripts and subscripts

^: Superscript for Dimensional Value; r: Subscript for 
Reference Condition; t: Subscript for Total Condition

Introduction

It has been established that if the Knudsen number (Kn) 
is used as an expansion parameter, the Navier-Stokes (N-S) 
equations and their transport coefϐicients can be derived from 
the Boltzmann Equation (BE) using the Chapman-Enskog or 
multi-scale expansion [1]. Consequently, for hydrodynamic 
and ϐluid dynamic ϐlow problems in the continuum regime, 
with Kn << 1 assumed, solving the BE provides an alternative 
and a more fundamental approach other than directly solving 
the N-S equations [2-6]. However, due to the complexity of 
the BE and the difϐiculty involved in solving it, attempts have 
been made by different researchers to simplify the BE through 
modeling. Among them, a commonly accepted model was 
that suggested by Bhatnagar Gross and Krook [7], hereafter 
designated as the BGK model. The BGK model was proposed 
for monatomic gas, where the gas particles were assumed 
to be rigid spheres with only the translational degree of 
freedom considered in analyzing the collision dynamics. Thus, 
a Maxwellian distribution is assumed for the equilibrium 
distribution function f eq in the BGK model. Since then, most 

Article Information
Submitted: May 30, 2024
Approved: July 15, 2024
Published: July 16, 2024

How to cite this article: Ronald SO. Lattice Boltzmann 
Method without Invoking the M << 1 Assumption. IgMin 
Res. July 16, 2024; 2(7): 589-610. IgMin ID: igmin223; DOI: 
10.61927/igmin223; Available at: igmin.link/p223

Copyright: © 2024 Ronald SO. This is an open access 
article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is 
properly cited.

Keywords: Maxwellian distribution; Euler equations; 
Navier-stokes equations; Aeroacoustics simulation

https://crossmark.crossref.org/dialog/?doi=10.61927/igmin223&domain=pdf&date_stamp=2024-07-16


July 16, 2024 - Volume 2 Issue 7

DOI: 10.61927/igmin2232995-8067ISSN

590SCIENCE

studies on the modeled BE were carried out by invoking the 
monatomic gas assumption, because work on polyatomic gas 
would involve a generalization of the modeled BE to include 
as many energy modes as mathematically possible. 

When rotational angular momentum is also considered 
in the derivation of f eq, the resulting theory could be quite 
complicated, especially for numerical simulations. Wang-
Chang, et al. [3] suggested a WCUB equation by introducing a 
set of particle distribution function f for each quantum mode 
to specify the internal state of the particles. Their equation 
is based on a spherically symmetric inter-particle potential, 
and it yields an appropriate description for polyatomic gas. 
However, their formulation does not consider the polyatomic 
gas with signiϐicant dipole moments or with a degenerating 
internal state [7]. This is in spite of the fact that the degenerate 
rotational states do play an important role in angular 
momentum polarizations. Nevertheless, the WCUB equation 
has been used by other researchers as a base to formulate 
simpler models; a good example is the approach of Morse [4] 
who simpliϐied the WCUB equation using a BGK-type modelled 
BE.

Different numerical methods have been used to solve 
the BGK-type modelled BE. Among the more widely used 
methods were those put forward by Broadwell [8], Cao, et al. 
[9], Mei and Shyy [10], and Wolf-Gladrow [11]. The method 
of Broadwell [8] is a discrete velocity method and assumes 
that the gas particles can be restricted to having only a small 
number of velocities. The classical lattice Boltzmann method 
(LBM) or ϐinite difference-based lattice Boltzmann method 
(FDLBM), such as those proposed by Cao, et al. [9] and Mei and 
Shyy [10], fall into this category. On the other hand, LBM is a 
special example of a particular discretization of the discrete 
Boltzmann equation [11].

In the initial stage of development of the LBM, there was a 
common understanding that the transport coefϐicients, such 
as the ϐirst coefϐicient of viscosity μ , the coefϐicient of thermal 
conductivity κ, and the ratio of speciϐic heats γ, could be 
correctly recovered from the modelled BE. In order to achieve 
these objectives, a small Mach number assumption, M << 1, 
was found to be necessary. This assumption is a consequence 
of the Taylor expansion invoked for the continuous f eq 
because it facilitates the derivation of the lattice counterpart. 
Unfortunately, this approach limits the application of the 
method to incompressible ϐlow subject to a Mach number 
restriction of M << 1. This assumption renders the energy 
equation no part to play in the whole formulation. On the other 
hand, recovery of the N-S equations for monatomic gas using 
the Chapman-Enskog expansion in continuous form supports 
the possibility of inclusion of the energy equation and its 
application to compressible ϐlows. Consequently, Alexander, 
et al. [12] proposed a thermal LBM with the energy equation 

included, while McNamara and Alder [13] showed that LBM 
could be made to mimic the thermal N-S equations by ϐixing 
a number of moments of the f eq. Even though improvements 
along these lines have been made, incorrect predictions of gas 
properties, such as the ratio of speciϐic heats γ , the Prandtl 
number Pr, etc. still occur in the commonly used LBM and are 
restricted to monatomic gas only. Most shortcomings can be 
traced to the original BGK model. Therefore, conventional 
LBM can be improved by ϐirst taking a critical, yet succinct, 
analysis of the originally assumed BGK model.

Numerous attempts have been made by different 
researchers to remedy the monatomic gas restriction in the 
LBM approach; these include the concept of multi-energy 
level to facilitate a ϐlexible speciϐic-heat ratio, such as those 
suggested by Cao, et al. [9], Hu, et al. [14] and Kataoka and 
Tsutahara [15], and the proposal of Xu [16] to modify the 
Maxwellian equilibrium distribution function by introducing 
an internal velocity associated with certain number of internal 
degrees of freedom to develop a gas kinetic scheme. Thus, the 
scheme will no longer be restricted to the ϐield of the discrete 
velocity method. In principle, these schemes are also suitable 
for diatomic and polyatomic gases. An alternative approach 
for diatomic gas alone has been put forward by Li, et al. [17], 
where the rotational degree of freedom of the gas particles is 
also considered in a modiϐied deϐinition of the total energy. 
Their approach leads to a slightly different f eq, the Maxwellian 
distribution. The modiϐied f eq of Li, et al. [17] is not limited to 
FDLBM, even though they used FDLBM to solve aeroacoustics 
problems to demonstrate the validity and viability of the 
proposed approach for diatomic gas.

In the BGK-type modelled BE, a unity Prandtl number, Pr 
= (μrcpr)/κr = 1, is inherent in the formulation even when μ 
is correctly recovered as demonstrated by Li, et al. [17] and 
Li [18]. Here, cp is the speciϐic heat of the ϐluid at constant 
pressure and the subscript r in cpr, μr, and κr refers to the 
reference condition. This incorrect Pr = 1 suggests that the 
thermal energy exchange between particles has not been 
replicated properly. Attempts to recover Pr correctly have 
been made; a well-known attempt is the BGK-Ellipsoidal-
Statistical model of Holway [6] which replaces the Maxwellian 
equilibrium distribution function of the original BGK model 
with an anisotropic Gaussian distribution. The proposal of 
Holway [6] has one drawback though; it is not easily adapted 
to numerical schemes. Since then, more practical methods 
have been put forward; they include the multiple relaxation 
time approach and Eucken’s [19] theory of heat conduction 
for gas particles. 

One of the reasons for the incorrect Pr = 1 value could 
be attributed to the Single-Relaxation-Time (SRT) model 
assumed in the BGK-type modelled BE of Lallemand and Luo 
[20]. Under the SRT model, the additional time required for 
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the relaxation of thermal energy after collision is neglected. 
In view of this, attempts have been made to extend the BGK-
type modelled BE to solve thermal problems based on a 
multi-speed and multi-relaxation time model. Alexander, 
et al. [12] proposed a two-dimensional (2-D) thermal LBM 
for monatomic gas. However, the resulting Pr thus obtained 
has a value of 0.5 which is inconsistent with real gas. Chen, 
et al. [21] employed a higher-order velocity expansion for 
the f eq to correct the calculated viscous stress and heat 
ϐlux; however, details of the parameter’s construction were 
not provided. Multi-speed and dual relaxation rate models 
proposed by McNamara, et al. [22], and Teixeira, et al. [23] 
allowed variation of Pr but their models are numerically 
unstable. Furthermore, the stabilization methods proposed 
in their approach were quite ad hoc. Lallemand and Luo 
[20] decoupled the shear and energy modes of the linearized 
evolution operator to improve its numerical stability but did 
not elaborate on the physical background of the proposed 
approach. A passive scalar approach by Shan [24] introduced 
an additional distribution function to help solve the energy 
equation separately. The proposed thermal LBM model led to 
a much higher computational cost compared to the isothermal 
case. Adopting the modiϐied BGK-type modelled BE proposed 
by Li, et al. [17], Leung, et al. [25] were able to show that the 
correct Pr can be recovered from an application of Eucken’s 
[19] theory of heat conduction to this approach. Unfortunately, 
no simulations have been carried out to validate the proposed 
concept and approach. Together, these studies show that 
the BGK-type modelled BE needs further improvement if 
the thermal energy exchange during the collision were to be 
sufϐiciently accounted for to enable a correct recovery of Pr.

It is clear that, besides the required assumption of a very 
small Kn for the recovery of the continuum transport equations, 
the BGK-type modelled BE examined so far shares two more 
common grounds. These are the assumption of a Maxwellian 
distribution (or its slight variation) for f eq in the BGK model, 
and the expectation that the BGK-type modelled BE should not 
only recover the continuum transport equations but also the 
transport properties of the ϐluid, such as μ and κ , or their non-
dimensional equivalent, Re and Pr. Here, Re is the Reynolds 
number deϐined as Re = ρrUrL/μr, and Pr is the Prandtl number 
previously given as Pr = (μrcpr)/κr = 1. In these expressions, 
U is the characteristic velocity scale, L is the characteristic 
length scale, and ρ is the ϐluid density. Since this latter point 
is known to be the case in the original BE, researchers often 
reasoned that particle collision physics could be sufϐiciently 
accounted for in the f eq and in the yet-to-be-deϐined particle 
collision relaxation time τ in the BGK model to effect correct 
recovery of ϐluid properties. Consequently, this assumption 
has been commonly invoked in subsequent work carried out 
to date.

As pointed out by Aristov [26], the distribution function 

in the BGK-type modelled BE takes a certain form. The 
Maxwellian distribution gives rise to the Euler equations if 
it is the ϐirst-order approximation in the Chapman-Enskog 
method, then the second-order equation would yield the N-S 
equations, while the ϐluid transport coefϐicients can be tied 
to τ. The LBM thus derived is restricted by two assumptions; 
these are a monatomic gas and a ϐlow Mach number M << 1. The 
ϐirst assumption can be addressed by reformulating an f eq for 
diatomic gas [27]. On the other hand, the second assumption, 
besides being restrictive in M, can also lead to leakage at the wall 
and in the computational domain of incompressible ϐlow [27]. 
Without corrections, the leakage will eventually compromise 
the calculated velocity ϐield, thus leading to a situation where 
the continuity equation is no longer satisϐied. Some remedies 
to the conventional LBM have been implemented; however, 
the monatomic gas and the M << 1 assumption discussed 
above still have not been properly addressed. The monatomic 
gas assumption can be dealt with by reformulating the f eq for 
diatomic gas. As for M << 1, it is helpful to note that the LBM 
thus derived is essentially obtained from the second-order 
terms in the distribution function assumed, thus giving rise 
to this M << 1 assumption. If a distribution function can be 
formulated such that the ϐirst-order terms can give rise to the 
N-S equations, then the resultant LBM will be free of the M << 1
assumption. Therefore, it is appropriate to ask if this M << 1
assumption is necessary or can be relaxed or replaced by 
improving the existing model of the BE. 

From the above discussion, it is clear that assuming a BGK-
type model for the BE is appropriate, but not entirely correct. 
Therefore, improvements in the Maxwellian distribution and 
its variation invoked for f eq can be sought. This approach has 
been demonstrated to be valid for the case of exact recovery 
of the Euler equations by Fu, et al. [28] and So, et al. [29], 
and they have derived an alternate f eq where the ϐirst term 
is given by a Maxwellian distribution. Three additional terms 
partially modeling the physics of particle-particle collision 
are also present. This enables an alternative f eq

 along the line 
suggested by So, et al. [30] to be sought with an objective to 
sufϐiciently account for the particle-particle collision physics 
to recover the N-S equations in a ϐirst-order Kn expansion 
of the modelled BE. Thus formulated, a new LBM free of the 
two commonly made assumptions is available. In addition, 
it is anticipated that the N-S equations recovered from the 
particle relaxation time τ would not be arbitrary. Rather, 
its determination can be shown to be related to the scaling 
chosen to render the modelled BE dimensionless. With these 
modiϐications, Kn << 1 is the only assumption left in the 
proposed approach to formulate a new LBM.

Objectives

The present study serves as a further explanation and, at 
the same time, provides supplemental information to previous 



July 16, 2024 - Volume 2 Issue 7

DOI: 10.61927/igmin2232995-8067ISSN

592SCIENCE

work [30] on the formulation of a general f eq
 that is valid and 

equally applicable for incompressible and compressible ϐlows. 
The continuum N-S equations required speciϐications of the 
ϐluid transport coefϐicients either in their dimensional form or 
as dimensionless numbers M, Pr, Re, etc. It is reasonable to 
allow the same speciϐications for the recovered N-S equations 
from the modelled BE. Therefore, the reference M, Pr, Re, etc. 
are considered as free parameters to be speciϐied, instead of 
being a part of the solution of the modelled BE.

The f  eq
 will be constructed in such a way that only ϐirst-order 

approximation terms are needed to recover the N-S equations; 
thus the M << 1 assumption is not needed in this approach. Once 
the continuous f eq is obtained, its lattice counterpart can be 
derived and proposals for a two-dimensional (2-D) improved 
LBM can be put forward. Validations of the improved LBM 
are carried out against aeroacoustics and diatomic gas ϐlow 
studies with M varying from M << 1 to M > 1. Special attention 
is paid to the resolution of shock structures for all M > 1 ϐlows 
considered. The calculations are validated against available 
experimental, analytical, direct numerical (DNS), and Direct 
Aeroacoustics (DAS) simulation results. To demonstrate the 
validity and viability of the new f eq thus derived, most cases 
considered previously in [30] are again chosen as test cases 
for the present paper.

It is expected that the present paper shares certain common 
mathematical formulations with So, et al. [30]. However, 
to facilitate an easy understanding of the methodology and 
formulation used to derive the improved LBM, it is necessary 
to give a stand-alone derivation of the improved LBM in 
Section 3 below. 

Recovery of the Navier-stokes equations

Governing equations: The basis of the present analysis 
is the acoustics scaling form of the N-S equations for a 
compressible gas. According to Lele [31], these equations can 
be written as:
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Where the total energy et is deϐined as et = e+(1/2|u|2). The 
viscous stress tensor σij and the heat ϐlux vector qi are given by
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Here, t is time, xi is the position vector, ui is the velocity 
vector, p is pressure, ρ is density, e is the internal energy of the 
ϐluid, T is its temperature, and R is the Universal gas constant. 
These symbols are used to denote dimensionless variables 
while their dimensional counterparts are designated by the 
same symbols with a hat (^). The equations are derived using 
the characteristic scaling for length L, velocity cr, time L/cr, 
density ρr, pressure 2

rrc  , temperature 
prr cc /2 , total energy 

2
rc , viscosity μ r, and conductivity κr. With these scaling, the 

following dimensionless parameters can be deϐined: M = Ur /cr,
Re = ρrLUr /μr, Pr = μrcpr /κr, r /ˆ , r /ˆ  . Here, Ur is the 
reference velocity. Finally, it should be pointed out that in 
writing down Eqs. (1) to (6), bold face and indices are used 
interchangeably to denote a vector, while only indices are 
used to denote second-order tensors, and repeated indices 
represent summation over the order of the tensor.

The objective of the present study is to attempt a recovery 
of the N-S equations as given in Eqs. (1) – (4) from a modelled 
form of the Boltzmann equation (MBE). The vehicle chosen 
is the BGK-type modelled BE with an unknown equilibrium 
distribution function ˆ eqf , and an undeϐined particle collision 
relaxation time̂ . This BGK-typed MBE in dimensionless form 
can be written as

 1 eq
x

f f f f
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
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
                    (7)

In Eq. (7), f is the dimensionless particle distribution 
function,  ξ is the dimensionless particle velocity vector, and 
τ is the non-dimensional relaxation time. Acoustics scaling 
has been used to make the equation dimensionless with 
normalization for̂ , f̂  and ˆ eqf given by
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Where τo = LKn/cr is the mesoscopic time scale, Kn is 
deϐined by Kn = xo/L, xo is the mesoscopic length scale, and D is 
the dimension of the problem (2 for 2-D and 3 for 3-D ϐlows). 
It is assumed that the length scale xo is very small compared 
to L, i.e., xo << L; therefore, both Kn and τo are very small. Note 
that under this normalization, τ Kn appears together and later 
simulations using LBM will show that as long as Kn << 1, there 
is no loss of generality to assume τ to be of order one.

This BGK-typed MBE assumes that the nonlinear particle 
collision behavior embodied in the collision integral of the 
original BE [30] has been sufϐiciently modelled in f eq, and that 
the deviation of f from its equilibrium state is small; therefore, 
f could be determined by solving Eq. (7) alone. The fact that 
the deviation of f from f eq is small has been assumed by other 
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researchers to demonstrate that the continuum Euler and N-S 
equations can be recovered from Eq. (7), albeit not exactly, 
provided the dense gas assumption is invoked. In other words, 
inherent in their approach Kn << 1 has also been assumed. 
Under this assumption, f can be expanded in terms of Kn to 
give

(0) (1) 2 (2) 3( )f f Kn f Kn f Kn    Ï                  (9)

Substituting Eq. (9) into Eq. (7) and collecting the same 
order terms to O(Kn2) gives the following equations for the 
ϐirst three elements of f (i); they are
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The original BGK model was proposed for monatomic 
gas, therefore, only the translational degree-of-freedom DT 
of the particle was considered, and f is given by a Maxwellian 
distribution. Consequently, the speciϐic heat ratio γ recovered 
for a diatomic gas is incorrect. It has been shown by Li, et al. 
[17] that γ = 1.4 for diatomic gas can be recovered exactly if 
the rotational degree-of-freedom DR of the particles is also 
included in the deϐinition of the total energy, et. In order to 
recover Eqs. (1) – (4) correctly for diatomic gas, the following 
macroscopic constraints have to be satisϐied by f eq and its 
moments in the particle velocity space. These constraints are 
given by:
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Higher-order terms f (n) and their moments are given by
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A slightly different way of writing Eq. (15) could better 
explain the physics of the et deϐinition. This alternate form is
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Where (ξ - u) is the peculiar velocity of the particles and 
K = DT + DR – D is the number of internal degrees of freedom. 
The ϐirst term on the right-hand side of Eq. (17) is the internal 
energy derived from the translational motion of the particles, 
while the second term accounts for the rotational motion, 

and the third term represents the kinetic energy of the ϐlow. 
If the ideal gas law as given in Eq. (4) were to be recovered 
identically, this requires that p = ρθ , where θ = RT/cp has been 
assumed, and the equi-partition theorem would then yield
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This leads to a correct expression for e and an expression 
for γ that does not depend on D. Consequently, γ = 1.4 is 
recovered correctly for any D because DT = 3 and DR = 2.

Once the equation of state has been recovered identically, 
the next step is to recover Eqs. (1) – (3). This is accomplished 

by multiplying Eq. (11) by    DDD RT /2/,,1 2   and then 

integrating over the whole particle velocity space. Making use 
of Eq. (10) and Eqs. (13) – (16), the following equations are 
obtained, 
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 (21) 

Up to this point, the derivation follows the conventional 
approach which assumes that the Euler equations can be 
recovered from the expanded MBE for f (1), while the N-S 
equations would need the additional consideration of the 
expanded MBE for f (2). Furthermore, it has been argued that 
the transport coefϐicients associated with the N-S equations, 
such as μ, κ, etc., should be related to τ and could be recovered 
from the MBE. This is the approach adopted here.

Another approach could be built on the assumption that it is 
not necessary to attempt to recover the transport coefϐicients 
from the MBE and to tie them to τ. After all, the continuum 
N-S equations to be recovered assume that these transport 
coefϐicients are known and can be speciϐied in the form of non-
dimensional numbers. Since only the MBE is solved and not 
the original BE, there are no convincing arguments to justify 
the assumption that the same physics embodied in the original 
BE can be replicated in its entirety in the BGK-type MBE. Eqs. 
(1) – (3) can be recovered from Eqs. (19) – (21) by permitting 
the reference non-dimensional numbers, such as M, Re, and 
Pr, to be speciϐied. This, however, does not preclude their local 
values from being determined in the course of solving the 
BGK-type MBE. Of course, the validity of this assumption will 
have to be justiϐied; one way to do so is to compare the MBE 
simulations with either the theoretical solutions, if available, 
or with numerical results obtained by directly solving the N-S 
equations.



July 16, 2024 - Volume 2 Issue 7

DOI: 10.61927/igmin2232995-8067ISSN

594SCIENCE

Once this assumption is invoked, recovery of Eqs. (1) – (3) 
from Eqs. (19) – (21) leads to the following identities for the 
integral terms in Eqs. (20) and (21).

   ijijjiij
eq

ji Puupdf                   (22)

    jkjkjtj
eq

j
RT Quqepudf

D
DD 


  


2

2             
(23)

Where τij is the stress tensor and together with the vector qj 
have to be speciϐied. The unknown second-order tensor ijP  and 
vector jQ  can now be determined once τij and qj are deϐined. 
Therefore, equations governing the behavior of ijP

 
and jQ are 

required. It can be seen that Eq. (2) can be recovered exactly 
if τij is deϐined as

12
Re Re 3ij ij ij ij kk
M M S S        

 
                 (24) 

And ijP  satisϐies the condition

0




j

ij

x
P                    (25)

Similarly, Eq. (3) can be recovered exactly if qj is deϐined as

PrRej
j

M Tq
x


 

    

                      (26)

And jQ  satisϐies the condition

0




j

j

x
Q                   (27)

The exact recovery of the N-S equations, therefore, hinges 
on the determination of ijP  and jQ , which are governed by Eqs. 
(25) and (27), and an evaluation of the unknown function f eq.

Before proceeding to determine f eq, ijP  and jQ , it should 
be noted that, according to their deϐinitions, M, Re, and Pr are 
evaluated at the reference point, i.e., they are not the local M, 
Re, and Pr. In a ϐlow where μ and κ do not vary much with 
temperature and the temperature has no drastic variation 
across the ϐlow ϐield, such as in aeroacoustics, the reference 
M, Re, and Pr will remain essentially constant over the whole 
ϐield. Otherwise, the local variation of μ and κ with temperature 
will have to be determined from physical laws, such as the 
Sutherland law or the power law. In the present formulation, 
the path taken is to specify the reference M, Re, and Pr. If, in 
addition, μ and κ are temperature dependent, their relations 
with temperature also have to be deϐined. Otherwise, the local 
τij and qj as given by Eqs. (24) and (26), respectively, could not 
be evaluated properly. This requirement is no different from 
that required in solving the continuum N-S equations for ϐlows 
where large gradients of ρ and/or T exist. As a result, all short 
comings of the continuum N-S equations for shock structure 
simulations (Brenner [32,33]; Greenshields and Reese [34]) 
would also show up in the current LBM solutions.

Solutions for jQ  and ijP : Solving Eq. (27) with appropriate 
boundary conditions is one of many ways to determine jQ .
Since Fu, et al. [28] have shown that there is no loss of 
generality in their attempt to recover the Euler equations 
exactly from the BGK-type modelled BE by assuming jQ  = 0 
to be valid; therefore, a trivial solution given by jQ  = 0 can 
be adopted also as an alternative. Their modelled BE thus 
derived has been applied to simulate aeroacoustics problems, 
and excellent agreement was obtained between the LBM 
solutions of the modelled BE and those derived analytically or 
calculated from the Euler equations using DNS.

Provided Eq. (27) is satisϐied, the macroscopic energy 
in Eq. (3) will remain unchanged no matter how jQ  is 
constructed. Thus, the setting jQ = 0 is a simple assumption 
that gives rise to a correct recovery of the N-S equations. An 
alternative assumption can be made by invoking a Fourier 
heat conduction model, such as

1
Prj

p j

TQ
x
 


                 (28)

For particle-particle collision where Prp is its Prandtl 
number. This assumption might not be appropriate, because 
together with Eq. (27) it will impose an additional constraint 

0/ 22  jxT
 

on the temperature behavior, which is not 
physical. An alternative way is to rewrite Eq. (23) in either one 
of the following two forms:

Delete jQ  (i.e. setting jQ = 0 because it is actually redundant, 
and further note the absence of jQ  in the lattice formulation 
(see Section 4, “Lattice f eq and LBM Simulation” ). 

Writing  
2

2
eqT R

j j t j
D D f d u p e Q

D
    




 
and setting 

j j k kjQ q u    , then 

Eq. (27) is not required.

For the present formulation, a simple assumption of 0jQ  
can be invoked. Either one of these forms will allow the N-S 
equations to be recovered exactly. However, whether these 
conjectures are valid for the prediction of shock structures for 
diatomic gas will be examined later.

Having determined jQ , the next step is to solve for ijP  
subject to Eq. (25). The procedure to derive a solution for ijP  
in the Euler equations case has been fully outlined in Fu, et al. 
[28]. In the present case, it is anticipated that, because of the 
presence of τij and qj in Eqs. (22) and (23), respectively, the 
derived f eq will be different from that given in Fu, et al. [28] 
for the Euler equations case. However, this is unlikely to affect 
the derivation for ijP . Therefore, the same procedure used to 
derive ijP

 
will be followed with only a brief description given 

below (for details refer to [30]).
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For 3-D ϐlows in Cartesian coordinates, three partial 
differential equations can be written down for the elements of 

ijP . According to Eq. (22), 
ijP  is symmetric. Even then, there are 

six unknowns in the three equations derived from Eq. (25). In 
order to have a close set of equations, three more equations 
are required. It should be noted that the trace of Eq. (22) 
together with p = ρθ and Eq. (18) gives

   




D

ii
RT

RT
D

ii DD
DDDP
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2

1
 u                 (29)

A fourth equation for an element of ijP  for I # j can be 
obtained by differentiating the elemental equations of Eq. 
(25) with respect to x, y, and z, and making use of Eq. (29) after 
summing up the separate elemental equations to give
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(30) 
  

Two more equations are required to form a close set for 
the determination of ijP . It should be noted that for the 2-D 
case, Eq. (30) is reduced to a second-order equation for 12P . 
This suggests that the following isotropic assumption can be 
made for the 3-D case, such that
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Taking the derivative of Eq. (31a) with respect to z and 
that of Eq. (31b) with respect to y and substituting them into 
Eq. (30) gives an equation for 12P , or
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Consequently, three independent equations for ijP  with 
i # j are obtained. This choice of equations is not unique; 
presumably, the isotropic assumption can be made for any 
two-elemental combination of ijP  with i # j. These three 
equations are of the Poisson type because of the presence 
of the cross-derivative term which is known. One possible 
solution set for ijP  can now be written for an inϐinite domain 
RD (- ∞ < xi < ∞) as
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Where     
  
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With D0 = 1 for 2-D ϐlow and D0 = 3 for 3-D ϐlow, respectively.

Determination of f eq: The solution of ijP  depends on a 

knowledge of ρ and ρ u which can be evaluated from Eqs. (13) 
and (14) once f eq for diatomic gas is known. For monatomic 
gas, f eq is given by the Maxwellian distribution function alone, 
as pointed out by Brenner [32-33]. The objective here is to 
ϐind a modiϐied f eq for diatomic gas that could satisfy the 
constraints given by Eqs. (13) – (15), ijP , and jQ . The solution 
for ijP  is given in Eqs. (33). That leaves f eq to be determined. 
Fu, et al. [28] determined f eq with guidance from previous 
analytical work [2,3,5,7]. It starts out by assuming

 expeq
o i i mn m nf A A B                                   (34a)

Then factoring the Maxwellian term out of Eq. (34a), and 
the manipulation is followed by expanding the exponential 
function in terms of i  to give
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Where α0 is a scalar, αj, aj, and bi are vectors, βmn is a second-
order tensor, and η is a parameter to be determined. In the 
present formulation, it is found that the ϐirst few orders of the 
approximation from the general anisotropic Gaussian form is 
sufϐicient to deϐine f eq for all cases tested. The ϐirst term on 
the right-hand side of Eq. (34c) is the Maxwellian distribution 
function, while the following three terms are the ϐirst and 
second moments of the particle velocity. These additional 
terms, therefore, could be interpreted as a ϐirst attempt 
to partially model the nonlinear behavior resulting from 
particle-particle collisions due to particle dynamics alone 
and could not account for particle dynamics due to thermal 
effect. If the thermal effect were also to be accounted for, most 
likely another term involving qj and/or e has to be added to 
Eq. (34c). Equation (34c) differs from conventionally known 
forms of f eq proposed by other researchers. The presence 
of these three additional terms in Eq. (34) is sufϐicient to 
allow aeroacoustics disturbances and shock capturing to be 
resolved accurately [28, 32, 33]. In other words, the proposed 
modeling of particle-particle collisions in Eq. (34c) could 
correctly account for the effect of aerodynamic and acoustic 
interaction, ϐlows with shocks, contact discontinuities, and 
expansion waves. It remains to be seen whether this same f eq, 
but possibly with different α0, αi, aj, bi, and βmn, is suitable for 
incompressible and compressible viscous ϐlows.

The equations for α0,  αj, aj, bi, and βmn, can be derived from 
Eqs. (13) – (15), (22) and (23). The results are:
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 From Eq. (35d), it is obvious that η could be determined 
by setting p = ρ/2η as in the inviscid ϐlow case. Since the state 
equation for diatomic gas is given by p = ρθ, η is evaluated to 
be η =1/2θ. The coefϐicients α0, αj, aj, bi, and βmn can then be 
determined as
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These coefϐicients are valid for both 2-D and 3-D ϐlows 
and have no undeϐined constants. Also, it can be seen that the 
Maxwellian distribution function and the original BGK model 
can be correctly recovered for the case of “monatomic gas and 
inviscid ϐlow”. However, the present formulation is not limited 
by these restrictions.

Thus deduced, an f eq valid for diatomic gas is obtained and 
is given by Eq. (34c). In this expression, the ϐirst-order terms 
give rise to the N-S equations. To show that this is indeed 
the case, the procedure and method used to carry out this 
derivation are described in Section 4 below.

Lattice f eq and LBM Simulation

It is necessary to write down the velocity space discretized 
form of Eq. (1). Since 1-D and 2-D ϐlows are considered in 
the present paper; therefore, as an example, only the lattice 
counterpart of Eq. (1) in a 2-D domain is given. The 3-D 
counterpart can be similarly written by following the same 
procedure. The velocity space discretized form of Eq. (1) is 
given by

 1 eq
x

f
f f f

t Kn
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                (37)

Where α is the index for the lattice velocity. In previous 
attempts on aeroacoustics and shock capturing, a D2Q9 lattice 
model was found to be sufϐicient for accurate resolution of 
the problems considered. However, certain problems might 
require a ϐiner lattice. Therefore, a D2Q13 model is chosen 
for the lattice eqf  and is presented below. The reduction to 
a D2Q9 model is simple and will not be repeated. For a D2Q13 
model, the lattice velocity is given by

0,00                                   (38a)

       7,5,3,1,4/1sin,4/1cos                 (38b)

       8,6,4,2,4/1sin,4/1cos2                (38c)

    2 cos 1 / 2 , sin 1 / 2 , 9,10,11,12                            (38d)

Where σ is a parameter to be determined.

Just as in the case of the recovery of the Euler equations, 
as detailed in Fu, et al. [28] and So, et. al. [30], a polynomial 
series in ξ up to second order is assumed for the discretized 
form of eqf , or

2 2eq
x y x y x yf A Ax A y B x x B y y B x y                            (39)

Here, the indices x and y are used to denote the stream 
and cross-stream direction in a 2-D ϐlow, and the coefϐicients 

, ,A Ax Bxx   , etc., could be scalars, vectors, or tensors. In 
particular, this proposed lattice f eq attempts to include the 
particle-particle collision effect of the additional terms in Eq. 
(34) into Eq. (39). However, it does not attempt to explicitly 
include the effect due to thermal heating of the particles. Its 
validity and appropriateness for aeroacoustics simulation and 
shock capturing have been demonstrated by Fu, et al. [28] and 
So, et al. [29] respectively, and by So, et al. [27] in a review of 
the development of a new LBM to treat a wide range of viscous 
incompressible and compressible ϐlows of monatomic gas. 
In order to accomplish the present objective, therefore, it is 
necessary to further demonstrate that Eq. (39) is equally valid 
for LBM simulations of viscous incompressible and viscous 
compressible ϐlow of diatomic gas with and without shocks.

The constraints, Eqs. (13) – (15), (22), and (23), used to 
recover the N-S equations in the continuous form are used to 
evaluate the coefϐicients in Eq. (39). For 2-D ϐlows, the results 
are (with N = 12 for a D2Q13 model and N = 8 for a D2Q9 
model):
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0

N
eq

xf u 


 


                  (40b)
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 (40h)
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    (40i)

Where u and v are the velocity components along the x- 
and y-direction, respectively, and the elements of ijP  are to 
be determined. These elements are obtained by solving the 
following three equations, which are given by Eqs. (25) and 
(29). For 2-D ϐlows, they can be simpliϐied to

0








y
P

x
P xyxx                 (41a)

0








y

P
x

P yyxy                  (41b)

  22 u
RT

RT
yyxxyyxx DD

DDPP



                (41c)

Of the nine equations, only eight are independent 
because one is a duplicate of the kinetic energy equation. 
These equations are used to determine , ,A Ax Bxx   , etc. 
If the coefϐicients having the same “energy shell” of the 
lattice velocities are assumed to be the same, the number of 
unknowns resulting from the coefϐicients , ,A Ax Bxx   , etc., are 
19 in a D2Q13 lattice model. Since the number of constraints 
available for the determination of these coefϐicients is 8, there 
is certain ϐlexibility, and reasonable assumptions can be made 
to facilitate the solution of the equations. As a ϐirst attempt, 
eleven coefϐicients out of the nineteen are assumed zero. 
Details of this derivation are given in Fu, et al. [28] and So, 
et. al. [30]. The results are summarized here as:

  0,12
9212
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2 yy yyByy p v P Byy Byy 


        (42g)
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It should be noted that the solution thus obtained is not 
unique. However, there are no undeϐined constants, except σ, 
which satisϐies the following restriction,

   2 2 2

0 0

4 1min max
2

N N
eq eq

T R

f e f
D D   

 

   
 

      
 u  (43)

Simpli ication for viscous lows with M << 1: For 
incompressible viscous ϐlows, the expressions for the 
continuous and lattice f eq function could be further reduced 
to simpler forms because ρ is constant, the equation of state 
and the energy equation are satisϐied automatically, and 
the only unknowns are u and p. The normalization could be 
modiϐied (e.g., changing cr to Ur); however, it is not crucial in 
the derivation of the f eq functions outlined below.

According to Eq. (36c), the coefϐicient aj is essentially 
related to the energy of the ϐluid ϐlow, while the coefϐicient βij 
in Eq.(36e) is a function of τij and ijP . With the energy equation 
automatically satisϐied, this suggests that the term in Eq. (34c) 
associated with aj might not play an important role in the case 
of incompressible viscous ϐlows. The term associated with 
the coefϐicient αj, i.e. Eq. (36b), is then reduced to one very 
similar to Eq. (36a). Hence, it could be absorbed into Eq. (36a). 
Consequently, the form for f eq could be reduced to two terms 
given by

  22
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1 , 1
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k m n

f b   (44) 
  

Using the constraints given by Eqs. (13), (14), and (22), the 
following expressions for ρ , ρuj, p and ijP  are obtained:
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Again, η can be determined to be η = ρ/2p, and the 
coefϐicients α0,bj and βij are found to be given by
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Where 
ijP  can be deduced from Eq. (25) and the result is:

 
i

ii
i

iiP                   (46d)

Equation (46d) shows that ijP  and τij appear together; 
therefore, there is no loss of generality to assume that ijP  could 
be absorbed into τij (even though it might be more appropriate 
to construct ijP  as before; however, later calculation shows 
that this is not at all necessary). In view of this realization, the 
lattice counterpart of the constraints for the discretized form 
of eqf  can be written as
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A polynomial expansion of Eq. (44) would lead to a 
discretized form of eqf  very similar to Eq. (39). Following the 
procedure for a D2Q9 model, one possible set of solutions is
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2 xxBxx p u Bxx 
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2 yyB y y p v B y y 
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4 xyBx y Bx y uv 
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The elimination of ijP  in the lattice form of f eq suggests that, 
by choosing other forms of f eq rather than those given by Eqs. 
(44a-f), one might arrive at the choice of 0ijP   in the case of 
the continuous form for f eq too. Therefore, there is no need to 
construct ijP  for the case of incompressible viscous ϐlows. Even 
then, the form of f eq is different from the original BGK model 
and includes a term that could be interpreted as partially 
accounting for the physics of particle-particle collisions; thus, 
providing a way to extend the LBM to account for the effect 
of particle-particle collisions resulting from diatomic gas ϐlow.

Alternative LBM simulation: The discrete Boltzmann 
equation, i.e. Eq. (37), can be viewed as a system of 
inhomogeneous hyperbolic equations. Therefore, any standard 
ϐinite difference scheme can be used to solve it. Traditional 
LBM is only second-order accurate in both spatial and temporal 
dimensions, thus, it is not suitable for direct aeroacoustics 
simulation (DAS). In the present investigation, the terms on 
the right-hand side of Eq. (37) are evaluated locally at every 
time step. A second-order Runge-Kutta time marching scheme 
is used to calculate the time-dependent term in Eq. (37), while 
the second term on the left-hand side of Eq. (37) is estimated 
using a sixth-order ϐinite difference scheme proposed by Lele 
[31]. Details of the present numerical scheme used to solve 
the discretized modelled BE have been thoroughly discussed 
in So, et al. [30]. The relaxation time τ in Eq. (37) could be 
speciϐied as follows. In the present formulation, τ and Kn 
always appear together as τ Kn in Eq. (37), thus implying that τ 
and Kn need not be speciϐied separately. Since τ is of O (1) and 
Kn is assumed to be very small; of the order of 10-7 according 
to Chapman and Cowling [1], the term τ Kn should be much 
smaller than 1 when compared to other terms in Eq. (37). In 
the present calculation, ∆ t  = τ Κn  =  10−5 is chosen because 
this is sufϐicient to give results identical to those obtained with 
DNS. Furthermore, numerical instability was not encountered 
in all calculations carried out, even without high-order ϐilters.

Since the absorbing boundary condition suggested by 
Kam, et al. [35] was found to give reliable and accurate results 
compared to those obtained from DNS simulations using a 
dimensionless absorbing region of 1, it is also invoked in the 
present study. As for the damping coefϐicient, its choice varies 
from problem to problem; therefore, it will be speciϐied when 
the speciϐic problem is discussed. In the present study, a D2Q9 
model is used, similar to all calculations carried out by Li, 
et al. [17,36] and Kam, et al. [35]. The boundary conditions 
for solid walls are speciϐied as un + 1 =  vn + 1 = 0 at the walls (no 
slip), pn+1 = pn,  ρn+1 = ρn, where subscript n + 1 is the boundary 
point and n is the immediate point next to the boundary. From 
these speciϐications, the boundary conditions for f and f eq can 
be determined. As for the boundary conditions for ijP , they 
are discussed in the next section.

Alternatively, Eq. (37) can be solved by any other 
numerical method; but it is not easy to set a proper boundary 
condition for fα. This is because it is sometimes difϐicult to 
ϐind a corresponding fα for any physical boundary condition 
expressed in macroscopic quantities. Therefore, devising a 
suitable numerical method to solve Eq. (37) is important. It is 
proposed to adopt a splitting method such that the equation is 
solved in two stages; traditionally, they are viewed as the free 
streaming stage and the collision stage. For the free streaming 
stage, the homogenous hyperbolic equation is solved ϐirst,

0x
f f
t


 
  


               (49a)
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A second-order Runge-Kutta time marching scheme is used 
to calculate the time-dependent term, while the second term 
on the left-hand side of Eq. (49a) is estimated using a sixth-
order ϐinite difference scheme proposed by Lele [31]. Next, for 
the collision stage, the results obtained in the ϐirst stage act as 
an initial condition for the differential equation below,

 1 eqf f f
t Kn

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

  


                 (49b)

Which is discretized by the Euler method with the choice 
Knt   . Thus, 
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                (49c)

With this clariϐication, the numerical procedure can now 
be summarized as follows: 

i. Given a distribution function fα at time t, after the free 
streaming stage, an intermediate value for fα

I is obtained.

ii. Using this fα
I and Eq. (40), the macroscopic quantities (ρ, 

u, v, p) can be determined.

iii. Boundary condition set at the macroscopic level is 
adopted here as is common for any ϐinite difference method. 

iv. Using the macroscopic quantities and through the 
expression given in Eq. (39), (fα

I)eq can be determined.

v. Adopting Eq. (49c), the collision stage is then completed 
by exactly setting the new fα as the equilibrium distribution 
function (fα

I)eq in (iv). For each set of macroscopic quantities, 
it will map to a unique equilibrium distribution function, and 
for each set of equilibrium distribution functions, it will map 
to a unique set of macroscopic quantities, so the macroscopic 
quantities obtained are in fact, the values at time t +∆ t.

This procedure indirectly shows that the accuracy of this 
scheme is of O(∆ t) because both the splitting method and the 
Euler method are only ϐirst-order accurate in time. In fact, 
recovery of the N-S equation also has an error O(Kn) = O(∆t) = 
1e -5. Even then, accuracy up to order 10-7 compared with DNS 
results can still be realized.

Solution of ijP  in the LBM scheme: The individual 
elements of ijP  are given by solving the following equations,

0




j

ij

x
P                 (50a)

kkP A                   (50b)

Where      2/T R T R kkA D D D D D u          for the 

N-S equations, while the viscous stress term kk  in A would 
be identically zero for the Euler equations. All the macroscopic 
quantities (ρ,u,p), including the physical boundary, are 

contained in A. In the 2-D case considered here, Eqs. (50a, b) 
reduce to

0xyxx PP
x y
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0xy yyP P
x y
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 

 
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xx yyP P A                     (51c)

For the present analysis, it is assumed that all functions 
are sufϐiciently smooth for their derivatives to exist. A 
Poisson equation can be derived from Eqs. (51a-c) through 
differentiation and invoking Eq. (51c); the result is

2 2 2

2 2 0xy
A P

x y x y
           

                    (52)

On the other hand, taking the derivative of Eq. (51a) with 
respect to x, and that of Eq. (51b) with respect to y, and then 
subtracting, the following is obtained:

22

2 2 0yyxx PP
x y


 

 
                  (53)

After using Eq. (51c), another Poisson equation is deduced, 
i.e.

2 2 2

2 2 2 0xx
A P

y x y
           

                 (54)

Similarly, an equation for yyP also can be obtained. Solving 
Eqs. (51a, b, c) and Eq. (53) with suitable boundary conditions 
and using Eq. (51c), xyP , yyP and xxP can be determined. The 
boundary conditions for these equations are given below.

A ϐinite rectangular domain with four boundaries, namely 
top, bottom, left, and right, represented by y = H, y = 0, x 
= 0, and x = L, respectively, is assumed. In solving Eq. (52), 
the Neumann condition is assumed for the top and bottom 
boundaries, i.e.,

0    0,xyP
at y H

y

 


                    (55)

While the Dirichlet condition is assumed for the left and 
right boundaries, or,

1 1  0 ,   xy L xy RP k at x P k at x L                                    (56)

Where k1L and k1R are constants. On the other hand, in 
solving Eq. (54), the Dirichlet condition is invoked for the top 
and bottom boundaries,

2 2    0 ,     xx B xx TP k at y P k at y H                        (57)

Where k2B and k2T are constants, and the Neumann 
condition is prescribed for the left and right boundaries, or,

0  at  0,xxP
x L

x

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
                   (58)
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Compatibility: Eq. (56) implies that on the left and 
right boundaries the y-derivative of xyP  vanishes. Similarly, 
the condition given by Eq. (57) implies that on the top and 
bottom boundaries the x-derivative of xxP  vanishes. Therefore, 
combining Eq. (55) and Eq. (58) ensures that Eq. (51a) is 
satisϐied on all four boundaries. Taking the derivative of Eq. 
(51a) with respect to x, and using Eq. (54), the following 
equation is obtained,

2 2

2 0xy yyP P
x y y
  
 

  
                 (59a)

Similarly, taking the derivative of Eq. (51a) with respect to 
y, and using Eq. (52),

2 2

2 0xy yyP P
x x y
  
 

  
                    (59b)

Eq. (59b) is obtained. This means that, on the boundary, 
Eqs. (59a) and (59b) must be satisϐied simultaneously. The 
only choice is

xy yyP P
k

x y
  
 

 
                   (59c)

Where k is an arbitrary constant. Therefore, Eq. (59c) holds 
on all four boundaries, which is a weaker condition compared 
to Eq. (51b).

It can be shown that using the above-proposed boundary 
conditions, solving Eqs. (52), (54), and (51c) is equivalent to 
solving a weaker system of Eqs. (51a), (59c) and (51c) in the 
whole domain. Taking the derivative of Eq. (52) with respect 
to y, that of Eq. (54) with respect to x, and then summing up 
gives

2 2

2 2 0xyxx PP
x y x y

    
          

                  (60)

Which is the Laplacian of the LHS of Eq. (51a). Since Eq. (51a) 
is satisϐied along the boundary, then due to Eq. (60), Eq. (51a) 
is satisϐied in the whole domain ( 2 0 & | 0 0bdyu u u     ).
With the help of Eq. (51c) and using a similar technique as that 
given above gives

2 2

2 2 0xy yyP P
x y x y

     
          

                     (61)

Similarly, Eq. (59c) is satisϐied along the boundary; 
therefore, due to Eq. (61), Eq. (59c) is satisϐied in the whole 
domain (by the maximum principle for the Laplace equation).

The weaker system (represented by Eqs. (51a), (59c), and 
(51c)) is different from the original system given by Eqs. (50a-c).
This implies that the constant ‘k’ in Eq. (59c) might not be zero. 
If the weaker system were to return to the original system, k 
has to be zero. In order to ϐind the condition under which this 
is true, double integrate Eq. (59c) along x and y to give

   
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Therefore, Eq. (61) shows that in order to achieve k = 0, the 
simplest conditions are:

1 1 2

2 00

0
1

R L B

L

T y H y

k k k

k A A dx
L  

  

 
                    

(63)

Validation of the Improved LBM for flows with M << 1

The recovered N-S equations and the associated boundary 
conditions for the modelled BE and ijP  are veriϐied for their 
validity and extent against aeroacoustics problems. Three 
cases are considered. These problems are selected to test 
the ability of the modelled BE to reϐlect the effect of time 
and Re correctly, then the effectiveness of the proposed no-
slip boundary conditions for the modelled BE, and ϐinally 
the ability of the modelled BE to replicate the vorticity-
acoustics, and entropy-acoustics interactions correctly. The 
three problems chosen for aeroacoustics are: (i) propagation 
of a circular pulse in an inϐinite medium, (ii) propagation of 
a circular pulse in an enclosure bounded by four walls, and 
(iii) interactions of a vorticity, an entropy, and an acoustic 
pulse in a moving stream. Whenever possible, the improved 
LBM simulations are validated against analytical results or 
against DNS of Eqs. (1)–(6) using a fourth-order Runge-Kutta 
time marching scheme for the time-dependent term and a 
sixth-order numerical scheme adopted by Lele [31] for the 
convective terms. No-slip boundary conditions are invoked 
at solid boundaries, while the absorbing boundary condition 
adopted by Leung, et al. [37] is used in all computational 
boundaries other than solid walls. Unless otherwise speciϐied, 
all cases investigated using the improved LBM, σ is estimated 
from Eq. (43). All other constants in the improved LBM are 
either derived analytically or known; therefore, arbitrary 
constants are absent. As such, the improved LBM solution 
should be identical to the DNS result of the same problem.

The error norms between the improved LBM and analytical 
or numerical solution of the N-S equations (DNS and/or DAS) 
of a macroscopic variable b are expressed in terms of the Lq 
integral norm as

 
1

LBM, DNS,
1

1 N qq

q j j
j

L
N 

 
  
 
b b b                  (64a)

For any integer q, and its maximum

  max LBM, j DNS, jj
L  b b b                 (64b) 
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Thus deϐined, the calculated error norms of p, u, and ρ will 
be tabulated for comparisons for the different cases studied.

Aeroacoustics and their simulation results: Direct 
aeroacoustics simulation is taxing on the numerical scheme as 
well as on the modelled BE. The reason is due to the disparity 
of scales [16,35] and the numerical accuracy required if the 
aeroacoustics scales were to be resolved correctly [28]. If 
the improved LBM could accurately replicate benchmark 
aeroacoustics problems correctly, including resolving the 
nonlinear interactions between ϐlow and acoustics and the 
effect of Re on these interactions, then the improved LBM can 
claim to be a viable and valid numerical method for this class of 
problems. Therefore, it is important to test the improved LBM 
on the classical aeroacoustics problems ϐirst. The following 
classical aeroacoustics problems have been identiϐied. They 
are Case (i) a circular pulse in an inϐinite medium, Case (ii) 
a circular pulse in an enclosure, and Case (iii) three pulses in 
a uniform stream. These results are presented and discussed 
separately below.

Case (i) – circular pulse in an in inite medium:

A circular pressure pulse located at (x, y) = (0, 0) has an 
initial distribution given by








 
  2

22

2.0
2lnexp,0,0, yxppvu                (65) 

Where ρ∞ = 1, ρ∞ = 1/γ, and ε chosen to be ε = 1x10-4 is 
simulated using the improved LBM and performing a DNS 
of the N-S equations. Other numerical conditions speciϐied 
are: ∆t = 0.00001, ∆x = ∆y = 0.05, computational domain is 
bounded by -3.5 ≤ x (y) ≤ 3.5 with one unit of buffer region (i.e. 
the actual domain is given by -2.5 ≤ x, (y) ≤ 2.5), Pr∞ = 0.71 and 
Re∞ = 10, 100, 1000 and inϐinite (inviscid). From this point 
on, the subscript ∞ is used to denote the reference condition. 
The numerical settings for DNS are given by ∆x = ∆y = 0.05, 
∆t = 0.001. Therefore, the ratio ∆x/∆t = ∆y/∆t = 5x103 for the 
improved LBM is 100 times larger than that used in the DNS 
simulation.

The results of this simulation are shown in So, et al. [30] 
and Figures 1-4. Figures 1 and 2 display the contour plots 
of p - ρ∞ and u - u∞, respectively. Figure 3 shows the contour 
plots of 

ijP , while Figures 4a and 4b give the distribution plots 
of the velocity components. All these plots are drawn from 
computation results at t = 1. In addition, the inviscid result 
together with those given by Re∞ = 10, 100, and 1000 are 
plotted in the same ϐigure for comparison. In Figures 1 and 2, 
the upper half displays the improved LBM results while the 
lower half shows the DNS results. It can be seen that the p - ρ∞ 
and u - u∞ contours in the two halves are essentially identical. 
The largest error norm is of the order of 10-9 while the smallest 
is of 10-10. This is true for all Re∞ cases examined [30]. They 

show that the present 6th-order ϐinite-difference scheme used 
by So, et al. [27] to resolve the modelled Boltzmann equation 
and the N-S equations are quite suitable for aeroacoustics 
problems. 

The values of the ijP  components (Figure 3) are small, 
but they are still two orders of magnitude greater than the 
error norms; therefore, they are signiϐicant and cannot be 
neglected. The role of viscosity is to diffuse the wave and this 
role is clearly illustrated in the panels of Re∞ = 100 (left side of 
ϐigure) and panels of Re∞ = 10 (right side of ϐigure) in Figures 
1-3. As far as the circular pulse is concerned, Re∞ = 1000 is 
sufϐiciently inviscid already. This is further substantiated by 
the distribution plots shown for the velocity components u and 
v (Figure 4). The Re∞ = 1000 solution is essentially identical to 
the inviscid result. From these results, it can be seen that as 
Re∞ decreases, the diffusion of the wave becomes more and 
more pronounced; this is reϐlected in a substantial reduction 
of the waves’ amplitude. Together, these results suggest that, 
for all practical purposes, it is quite appropriate to use it to 
treat high Re  wave propagation in the solution of the Euler 
equations.

Case (ii) – circular pulse in an enclosure: The 
propagation of a circular pressure pulse located at (x, y) = (-1, 
0) inside an enclosure with initial conditions given by

ρ = ρ∞ , u = u∞ , v = v∞ , p = p∞+ ε exp(-ln2((x+1)2+y2)/0.22)  (66)

Is investigated. For this example, u ∞ = v ∞= 0,  ρ∞ = 1, p∞ = 
1/γ ,  ε = 10-4 are chosen together with M∞ = 1, Re∞ = 1000, 
Pr∞ = 0.71, and γ = 1.4. Again, the numerical settings are given 
by ∆x = ∆y = 0.05, while ∆t = 0.001 is selected for DNS, and 
∆t = 0.00001 for LBM. The effectiveness of the proposed wall 
boundary condition for f can be shown by the contour maps of 
(p - p∞ ) and (u - u∞ ) in So et al. [30]. All three components of ijP  
in a 2-D ϐlow are shown in Figure 5. The error norms between 
the improved LBM and DNS results are tabulated in So, et al. 
[30]; the smallest error norm is of order 10-10 while the largest 
is of order 10-8, consistent with those given in Case (i). Clearly, 
these results show that the wall boundary condition proposed 
for f is valid; consequently, the error norms between the two 
solutions are extremely small.

Case (iii) – three pulses in a uniform stream: 

The three-pulses are a pressure pulse, a vorticity pulse, 
and an entropy pulse propagating in a uniform mean ϐlow 
u∞. Only the pressure pulse is propagating with speed c, the 
entropy pulse and the vortex pulse move with u∞ . The initial 
conditions speciϐied in Tam and Webb [38] are:

aba eppee 121 ,                     (67a)

  bb exvveyuu 1, 22                        (67b)
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Figure 1: Contour plots (with 16 contour lines) of p - p at t = 1 for four Re: there are 16 contour lines with (max, min) given by (1.4594e-005, -9.1947e-
006) for inviscid ϐlow; (1.3889e-005, -8.8471e-006) for Re = 1000; (9.7796e-006, -6.8992e-006) for Re = 100; and (2.8246e-006, -4.5021e-006) for 
Re = 10 in each plot. The upper half is the improved LBM solution and the lower half is the DNS result.

Figure 2: Contour plots (with 16 contour lines) of u - u∞ at t = 1 for four Re: there are 16 contour lines with (max, min) given by (1.5713e-005, -1.5713e-
005) for inviscid ϐlow; (1.5042e-005, -1.5042e-005) for Re = 1000; (1.0899e-005, -1.0899e-005) for Re = 100; and (3.1526e-006, -3.1526e-006) for 
Re = 10 in each plot. The upper half is the improved LBM solution and the lower half is the DNS result.
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              (67c)

Where ε1 = 0.000 landε2 = 0.001. The reference density, 
speed, and pressure are given by ρ∞ = 1, u∞ = 0.9, v∞ = 0, p∞ = 
1/γ. Under the present formulation, u∞ is identical to M∞. This 
problem has been treated by Fu, et al. [28] using the modelled 
BE to recover the Euler equations and they choose u∞ = M∞ = 

0.9. Therefore, the present simulation will again specify M∞ = 
0.9 in addition to stipulating Pr∞ = 0.71 and Re∞ = 10, 100, and 
1000 plus the inviscid calculation.

The (p - p∞) and (u - u∞) contours are plotted in Figures 6 
and 7, respectively, while those for ijP  are shown in Figure 8.
All Re∞ cases calculated, including the inviscid case, are 
depicted in each ϐigure. They illustrate the effect of Re on the 
propagation of the pressure pulse and its interaction with 

(I) (II)

(III)

Figure 3: Contour plots (with 8 contour lines) of ijP  for four different Re : 
(I) -- Plots for xyP  the (max, min) for inviscid ϐlow is (5.8990e-011, -5.8980e-011), for Re = 1000 is (2.7677e-008, -2.7685e-008), for Re = 100 is (1.5651e-007, -1.5655e-007), 
and for Re = 10 is (3.1678e-007, -3.1682e-007). 
(II) --- xxP  the (max, min) for inviscid ϐlow is (2.0625e-011, -1.3168e-010), for Re∞ = 1000 is (5.9169e-008, -3.8018e-008), for Re∞ = 100 is (3.3780e-007, - 2.1940e-007), and 
for Re∞ = 10 is (6.2764e-007, - 5.8298e-007). 
(III) --- xxP  the (max, min) for inviscid ϐlow is (2.0704e-011, -1.3177e-010), for Re∞ = 1000 is (5.9184e-008, -3.7942e-008), for Re∞ = 100 is (3.3789e-007, -2.1884e-007), and 
for Re∞ = 10 is (6.2730e-007, -5.8425e-007).
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the entropy and vorticity pulse. It can be seen that as Re∞ 
decreases, the pressure contours become more and more 
diffuse with similar behavior recorded for the components 
of '

ijP . Just as in Case (i), the magnitude of '
yyP  is orders of 

magnitude larger than the other two components (Figure 8). 
Therefore, it plays a major role in the correct calculation of the 
interaction between the three pulses. All these results show 
that the improved LBM solutions are essentially identical to 
those given by DNS. Further evidence can be found in the 
calculated error norms tabulated in So, et al. [30]. The error 
norms have a low of 10-9 and a high of 10-7. These values are at 
least one order better than those reported in Li et al. [17, 36] 
using the same 6th-order ϐinite-difference scheme but solving 
a different modelled BE.

Validation of the improved LBM for lows with M  > 1

The ability of the LBM to correctly simulate aeroacoustics, 
compressible ϐlows with shocks, and shock structure has 
been thoroughly studied and reported in [29,30]. In the 

shock structure problems, Argon and Nitrogen shocks at 
different M are attempted. The validity of the N-S equations 
to replicate shock structure is investigated together with 
remedies proposed by Brenner [32,33], and Greenshields 
and Reese [34]. It can be shown that the modelled BE, which 
can give an exact recovery of the N-S equations, suffers the 
same inadequacy as the N-S equations themself; therefore, the 
remedies suggested by Brenner [32,33] can also be built into 
the analytically derived f eq.

Shock structure simulation results: The objective of 
this section is to simulate the structure of a steady plane 
shock where the thickness is so thin that it challenges the 
validity of the continuum assumption. This is a 1-D boundary 
value problem. The governing equation is the 1-D steady N-S 
equation which in dimensionless form can be written as

  0

 u
x
                     (68)

Figure 4: Distribution of u and v at t = 1 for different Re : (a) u along x-axis, b) v along y-axis. The black dash curve is the inviscid solution, the blue curve represents the DNS 
results, and the blue crosses represent the improved LBM results.
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Figure 5: Contour map of the xyP , xxP  and yyP  ϐluctuation at (a) t = 3.0 and (b) t = 6.0. The lower half is the DNS solution; the upper half is the improved LBM simulation. There 

are 16 equally distributed contour lines in each plot, and the (max, min) values at t = 3.0 and t = 6.0 are (2.1881e-008, -2.1887e-008) for xyP , (3.2134e-008,-1.6665e-008) for xxP  

(3.9055e-008,-1.9992e-008) for yyP ; and (1.2511e-008,-1.2508e-008) for xyP  (2.5122e-008,-1.4689e-008) for xxP , (2.0682e-008,-4.1409e-008) for yyP , respectively.

Figure 6: Contour plots of p - p at t = 1 for four Re: there are 16 contour lines with (max, min) given by (1.4619e-005, -9.6695e-006) for inviscid ϐlow; 
(1.4809e-005, -9.3697e-006) for Re = 1000; (1.7862e-005, -1.0858e-005) for Re = 100; and (3.9522e-005, -1.6379e-005) for Re = 10 in each plot. The 
upper half is the improved LBM solution and the lower half is the DNS result.
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Figure 7: Contour plots of u - u∞ at t = 1 for four Re∞: there are 16 contour lines with (max, min) given by (2.0576e-004, -2.0582e-004) for inviscid ϐlow; 
(2.0105e-004, -2.0123e-004) for Re∞ = 1000; (1.6647e-004, -1.6663e-004) for Re∞ = 100; and (9.3840e-005, -9.1715e-005) for Re∞ = 10 in each plot. The 
upper half is the improved LBM solution and the lower half is the DNS result.

(I)

(III)

(II)

Figure 8: Contour plots (with 8 contour lines) of ijP  for four different Re: 
(I) --- xyP  the (max, min) for inviscid ϐlow is (9.7981e-005, -9.6920e-005), for Re∞ = 1000 is (9.5376e-005, -9.4783e-005), for Re∞ = 100 is (7.6808e-005, 
-7.7825e-005), and for Re∞ = 10 is (3.7115e-005, -3.8695e-005).
(II) --- xxP

 
the (max, min) for inviscid ϐlow is (9.9110e-005, -3.1951e-004), for Re∞ = 1000 is (9.3853e-005, -3.1522e-004), for Re∞ = 100 is (7.0335e-005, 

-2.6445e-004), and for Re∞ = 10 is (2.9201e-005, -1.0627e-004); 
(III) --- yyP  the (max, min) for inviscid ϐlow is (-0.4859, -0.4863), for Re∞ = 1000 is (-0.4859, -0.4863), for Re∞ = 100 is (-0.4860, -0.4862), and for Re∞ = 10 
is (-0.4860, -0.4861).
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  (70) 
 

Where λ is the second coefϐicient of viscosity. 
Asymptotically, the shock structure is bounded by two 
equilibrium states. The boundary condition is related by the 
Rankine-Huguenot condition, which can be speciϐied as,

2 2
2 1 1 2 1
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( 1) 2 ( 1), 1
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 
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  
               (71)

Where subscript ‘1’ and ‘2’ represent the state ahead 
(upstream) and behind (downstream) the shock, respectively. 
The state ahead of the shock (state ‘1’) is used as a reference. 
The characteristic length is chosen to be the mean free path, 
which is given by
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ˆ16
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
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                   (72)

Where the ‘hat’ is again used to denote dimensional 
quantities. Therefore, the reference Reynolds number Re∞ = 
Re is given by
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Since the shock is a steady one, the shock Mach number is 
the Mach number ahead of the shock, i.e., M∞ = M1. The power 
law is used to represent the variation of viscosity μ with 
temperature T, 
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                     (74)

Where exponent (s) is a constant equal to 0.816 and 0.756 
for Argon and Nitrogen gas, respectively. A similar power 
law will also be assumed for the thermal conductivity κ [1]. 
For the second coefϐicient of viscosity, Stokes’s hypothesis is 
adopted, i.e., λ = -2μ/3, which is suitable for monatomic gas, 
but doubtful for polyatomic gas as pointed out by Gilbarg and 
Paolucci [39].

The solution of Eqs. (67) - (69) is obtained by solving their 
unsteady counterparts until a steady-state solution has been 
reached. The initial condition is given by
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                (75)

A ϐixed boundary state denoted by subscript ‘1’ at x → -∞ 
is set so that

1 1 1 11, , 1/u M p                      (76)

While the boundary state ‘2’ at x → +∞ is set according 

to the Rankine-Huguenot condition given in Eq. (71). Data 
is presented in the form of a normalized value A~ , which is 
deϐined as

12

1~
AA
AAA




                     (77)

Improved LBM simulation of shock structure: Three 
cases were demonstrated in So, et al. [30]; they are the Argon 
shocks at M = 1.2 and at M = 1.55 reported in Ohwada [40], 
and the Nitrogen shock at M = 1.53 reported in Alsmeyer 
[41]. The numerical simulations are given by the improved 
LBM and the solution of Eqs. (68) – (70) are compared 
with the DNS result of Ohwada [40] and the experimental 
measurements of Alsmeyer [41]. Since this is a 1-D shock, 

0xx xyP P   . Therefore, the only nonzero component in ijP  
is yyP  . Its distribution for each shock can be found in So, et 
al. [30]. Two observations can be made: the ϐirst is that the 
present numerical results, either obtained from the improved 
LBM or from solving Eqs. (68) – (70), are essentially identical; 
thus showing that the recovery of the N-S equations from 
the modelled BE is exact. However, these results do not 
quite agree with either the DNS result or the experimental 
measurements. The simulated results are symmetric about 
x = 0 while the DNS and experimental measurements show 
asymmetry to different degrees dependent on whether the gas 
is Argon or Nitrogen. The discrepancy between simulations 
and other data increases from Argon to Nitrogen shock as 
the asymmetry becomes more and more acute. The second 
observation is that the magnitude and behavior of yyP  follows 
closely that of the shock proϐile. This indicates the importance 
of ijP  in the improved LBM simulation. It could be speculated 
that if the contribution of yyP  is absent, like in conventional 
LBM, the simulated shock structure would most likely be less 
correct. In order to understand these discrepancies, a close 
examination of the nature of shock structures is necessary. 
Through this examination, it is hoped that a remedy could be 
found to improve the present numerical simulations.

Physics of shock structure: Macroscopically, a shock 
wave appears as a discontinuity; however, this is not the case 
in the microscopic dimension. The calculation of the structure 
of a stationary shock often represents a challenge for models 
of rareϐied gas ϐlow, because Kn is no longer small; therefore, 
the continuum assumption is not quite valid. Thomas [42] 
argued for Becker’s idea that only kinetic theory and BE, but 
not any continuum method, are capable of simulating shock 
structure correctly. Hence, solving the BE seems to be another 
viable approach for any shock structure problem. Following 
the kinetic theory and starting from the BE or a modelled 
BE, it could be expected that getting higher order terms in 
the Chapman-Enskog expansion could for example result 
in the Burnett equation, thus the likelihood of simulating 
shock structure properly. However, Wang-Chang, et al. [3] 
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showed that the Chapman-Enskog theory yields a series that 
converges so slowly that it is doubtful whether they have 
any validity unless M ≈ 1 [2]. Furthermore, Mott-Smith [2] 
concluded that “the Chapman-Enskog theory is not applicable 
to strong shock.” Subsequently, Salwen, et al. [5] proposed 
a bimodal distribution for strong shock and extended the 
proposal by adding ‘correction terms’ to bring the method 
back into agreement with hydrodynamic theories for weak 
shock. In numerical simulation, Chu [43] employed a two 
reduced-functions approach. A discrete ordinate method was 
used to solve the governing equations by ϐirst removing the 
velocity space dependency from the distribution functions so 
that the BE could be solved in the phase space. However, the 
most commonly accepted solution method for the BE in the 
simulation of shock structure is the direct simulation Monte 
Carlo (DSMC) method of Bird [44]. This simulation is often 
used as a benchmark for testing new numerical schemes [45] 
or new kinetic models for rareϐied ϐlow [46,47].

Although the concept of a continuum might not be 
meaningful in shock structure simulation, researchers are not 
willing to give up the macroscopic approach; they proposed to 
modify the N-S equations to achieve an extended hydrodynamic 
model that might be suitable for rareϐied gas. Gilbarg and 
Paolucci [39] explored the consequences and potentialities 
of continuum methods to simulate shock structure in detail. 
Weiss [48] showed by numerical calculation that extended 
hydrodynamic equations developed by the method of moment 
have restrictions related to M. Continuous shock structure only 
exists up to a critical M, e.g. no continuous shock beyond M = 
1.65 exists by invoking Grad’s 13-moment theory. Recently, 
Brenner [32,33] proposed modiϐications to the N-S equations 
that are based on theoretical arguments. It is hypothesized 
that the velocity appearing in the velocity gradient term in 
Newton’s rheological law should be changed from the ϐluid’s 
mass-based velocity to its volume-based velocity. Since the 
proposal has supporting experimental evidence, discernible 
improvement for the shock structure is obtained if these 
new equations were solved rather than the N-S equations. 
Therefore, it is worth investigating the extension of the 
Brenner-Navier-Stokes model [33] to the improved LBM to 
see if the same improvements can be obtained, and this is the 
reason why such cases were calculated in So, et al. [30].

Brenner correction applied to the improved LBM: The 
normalized Brenner-N-S equations are given by the following:

  0j
j

u
t x
  
 

 
                  (78)
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Where the stress tensor T
ij
 (It should be noted that T 

without any subscripts is still used to denote temperature. ) is 
modiϐied by adding an additional term B

ij
 as given below
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                 (81)

And the square bracket is deϐined as

 (1/ 3) ( ) , / 2TA A tr A I A A A     
                  

(82)

The parameter Pr2 is deϐined as the ratio of the kinematic 
viscosity to the volume diffusivity coefϐicient by Brenner [32, 
33]. As suggested by Greenshields and Reese [34], it should be 
greater than or equal to unity to avoid nonphysical behavior. 
For 1-D steady ϐlow, the governing equations for shock 
problems are reduced to 

  0u
x



                     (83)
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In these equations, Power law is again used to represent 
the variation of μ and κ , while temperature T  and λ are related 
to μ by the Stokes relation.

The Brenner-Navier-Stokes model [32, 33] is given by Eqs. 
(83) – (85). Similarly, the improved LBM could be modiϐied 
by requiring the modelled BE to recover Eqs. (78) – (80) with 
Tij given by Eq. (81). The procedure is identical to that given 
above for the recovery of the N-S equations and the lattice 
counterpart can again be deduced by following the procedure 
outlined in Section 3. Therefore, the derivation details are 
omitted here. The simulation results for the Argon shock at 
M = 1.55 and the Nitrogen shock at M = 1.53 can be found 
in So, et al. [30]. In all the simulations, power law variation 
with temperature has been assumed for μ and κ. For the 
Argon shock, Brenner’s correction is sufϐicient to bring the 
simulation results to agree with the measurements. In other 
words, for monatomic gas, Brenner’s correction is sufϐicient 
to model the collision behavior of the gas particles to allow an 
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extension of the small Kn assumption to replicate the shock 
structure up to M = 1.55. The same correction proves to be 
inadequate for a diatomic gas at about the same M. This shows 
that the extension of the continuum assumption to a high M 
ϐlow of non-equilibrium compressible ϐlow is not viable. The 
improved LBM results are identical to those given by the 
Brenner-Navier-Stokes model simulation. Since the improved 
LBM recovers the continuum N-S equations and its Brenner 
correction exactly, this failure is not surprising. The improved 
LBM is limited by the Chapman-Enskog expansion which is an 
expansion in terms of Kn. If the shock structure of diatomic 
gas were to be replicated correctly, the small Kn assumption 
invoked for the improved LBM has to be relaxed.

Conclusion

A way to correctly recover the Navier-Stokes equations 
for incompressible and compressible diatomic gas ϐlows 
from a BGK-type modelled Boltzmann equation has been 
proposed and formulated by So, et al. [30]. This BGK-type 
modelled BE is based on a generalized equilibrium particle 
distribution function that is derived by considering moments 
of the particle distribution function. Thus formulated, the 
equilibrium particle distribution function has four terms; the 
leading term is a Maxwellian, while the other three terms are 
moments of the particle distribution function. The presence 
of these terms allows the rotational dynamic behaviour of the 
particles to be considered in the formulation of the improved 
LBM. A singular advantage of this approach is that it allows the 
N-S equations to be recovered from the ϐirst-order expansion 
of the distribution function. Thus, it is not restricted by the 
M << 1 assumption and is formulated for diatomic gas. The 
reason this assumption is not necessary is that second-order 
or higher-order expansion terms in the distribution function 
are not required. However, the present methodology cannot 
be used to recover the transport coefϐicients of the ϐluid 
because, in the process of recovering the N-S equation, one 
stipulation has to be made, i.e., the reference M, Re, Pr, have to 
be speciϐied, much like in the non-dimensional N-S equations 
where these non-dimensional numbers are assumed to be 
known. This methodology is also valid and viable for the 
recovery of different ϐluid dynamic governing equations 
subject to the Kn << 1 assumption.

The improved BGK-type modelled BE is resolved to 
assume a velocity lattice at each grid point of a ϐinite difference 
scheme used to solve the lattice equations numerically. For 
two-dimensional problems, only a nine-velocity-lattice model 
is required. Validations are carried out against benchmark 
aeroacoustics problems and one-dimensional structures of 
Argon and Nitrogen shocks. Excellent agreement between 
the improved LBM results and those obtained from direct 
numerical simulation (DNS) of the N-S equations has been 
achieved for all aeroacoustics problems investigated, including 

acoustics wave propagation inside an enclosure, in an inϐinite 
medium, and interaction with entropy and vorticity waves. 

In the shock structure problems attempted, it is found that 
the improved LBM solutions are in perfect agreement with 
those derived from DNS, but they are not in agreement with 
experimental measurements. The discrepancy for the Argon 
shock could be remedied through a modiϐication made to 
the N-S equations suggested by Brenner [32, 33]. However, 
disagreement is still noticeable for Nitrogen shocks even after 
the modiϐications had been implemented. This could be traced 
to the inadequacy of the continuum assumption in both the N-S 
equations and in the modelled Boltzmann equation because, 
within the shock layer, Kn is not necessarily very small; this is 
especially true for diatomic gas shock. In view of this, there is 
a need to further improve the modelled Boltzmann equation 
so that it is valid over a wider range of Kn. Consequently, it 
can be said that the modelled Boltzmann equation suffers the 
same limitations as the N-S equations. Its only advantage is the 
solution of one scalar equation for aerodynamics problems 
ranging from incompressible to compressible ϐlows with and 
without shocks; therefore, computational errors associated 
with numerically solving the N-S equations could be avoided.

Acknowledgements

Administrative and computer support provided by the 
Mechanical Engineering Department,

The Hong Kong Polytechnic University, Kowloon, HKSAR, 
PRC are gratefully acknowledged.

References
1. Chapman S, Cowling TG. The Mathematical Theory of Non-uniform Gases. 

Cambridge University Press; 1939. Chapter 12.

2. Mott-Smith HM. The solution of the Boltzmann equation for a shock wave. 
Phys Rev. 1951;82:885-892.

3. Wang-Chang CS, Uhlenbeck GE, deBoer J, editors. Studies in Statistical 
Mechanics. Wiley; 1964; 2.

4. Morse TF. Kinetic model for gases with internal degrees of freedom. Phys 
Fluids. 1964;7:159-169.

5. Salwen H, Grousch CE, Ziering S. Extension of the Mott-Smith method for 
a one-dimensional shock wave. Phys Fluids. 1964;7:180-189.

6. Holway LH. New statistical models for kinetic theory: methods of 
construction. Phys Fluids. 1966;9:1658-1673.

7. Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases: 
I. Small amplitude processes in charged and neutral one-component 
systems. Phys Rev. 1954;94:511-525.

8. Broadwell J. Study of rareϐied shear ϐlow by the discrete velocity method. 
Phys Fluids. 1964;7:1243.

9. Cao NS, Chen S, Jin S, Martinez D. Physical symmetry and lattice symmetry 
in the lattice Boltzmann method. Phys Rev E. 1997;55:R21-24.

10. Mei R, Shyy W. On the ϐinite difference-based lattice Boltzmann method in 
curvilinear coordinates. J Comput Phys. 1998;143:426-448.

11. Wolf-Gladrow DA. Lattice-Gas Cellular Automata and Lattice Boltzmann 
Models: An Introduction. Springer Verlag; 2000. Chapter 5.



July 16, 2024 - Volume 2 Issue 7

DOI: 10.61927/igmin2232995-8067ISSN

610SCIENCE

12. Alexander FJ, Chen S, Sterling JD. Lattice Boltzmann thermohydrodynamics. 
Phys Rev E. 1993;47:R2249-R2252.

13. McNamara GR, Alder B. Analysis of the lattice Boltzmann treatment of 
hydrodynamics. Physica A. 1993;194:218-228.

14. Hu S, Yan G, Shi W. A lattice Boltzmann model for compressible perfect 
gas. Acta Mechanica Sinica (English Edition). 1997;13:218-226.

15. Kataoka T, Tsutahara M. Lattice Boltzmann model for the compressible 
Navier-Stokes equations with ϐlexible speciϐic-heat ratio. Phys Rev E Stat 
Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 2):035701. doi: 10.1103/
PhysRevE.69.035701. Epub 2004 Mar 25. PMID: 15089354.

16. Xu K. Gas-Kinetic Scheme for Unsteady Compressible Flow Simulations. 
von Karman Institute for Fluid Dynamics Lecture Series, Vol. 1998-03. 
von Karman Institute; 1998.

17. Li XM, Leung RCK, So RMC. One-step aeroacoustics simulation using 
lattice Boltzmann method. AIAA J. 2006;44:78-89.

18. Li XM. Computational Aeroacoustics Using Lattice Boltzmann Model. 
PhD thesis. Mechanical Engineering Department, Hong Kong Polytechnic 
University; 2006.

19. Eucken A. Über das Wärmeleitvermögen, die speziϐische Wärme und die 
innere Reibung der Gase. Physikalische Zeitschrift. 1913;14:324-332.

20. Lallemand P, Luo LS. Theory of the lattice Boltzmann method: acoustic 
and thermal properties in two and three dimensions. Phys Rev E Stat 
Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036706. doi: 10.1103/
PhysRevE.68.036706. Epub 2003 Sep 23. PMID: 14524925.

21. Chen Y, Ohashi H, Akiyama M. Thermal lattice Bhatnagar-Gross-Krook 
model without nonlinear deviations in macrodynamic equations. 
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 
Oct;50(4):2776-2783. doi: 10.1103/physreve.50.2776. PMID: 9962315.

22. McNamara GR, Garcia AL, Alder BJ. Stabilization of thermal lattice 
Boltzmann models. J Statistical Phys. 1995;81:395-408.

23. Teixeira C, Chen H, Freed DM. Multi-speed thermal lattice Boltzmann 
method stabilization via equilibrium under-relaxation. Comput Phys 
Commun. 2000;129:207-226.

24. Shan X. Simulation of Rayleigh-Bénard convection using a lattice 
Boltzmann method. Phys Rev E. 1997;55:2780-2788.

25. Leung RCK, Kam EWS, So RMC. Recovery of the transport coefϐicients in 
the Navier-Stokes equations from the modeled Boltzmann equation. AIAA 
J. 2007;45:737-739.

26. Aristov VV. Direct Methods for Solving the Boltzmann Equation and Study 
of Nonequilibrium Flows. Kluwer Academic Publishers; 2001. Chapter 7.

27. So RMC, Leung RCK, Kam EWS, Fu SC. Progress in the development of a 
new lattice Boltzmann method. Computers & Fluids. 2019;190:440-469.

28. Fu SC, So RMC, Leung RCK. Modeled Boltzmann equation and its 
application to direct aeroacoustics simulation. AIAA J. 2008;46:1651-
1662.

29. So RMC, Leung RCK, Fu SC. Modeled Boltzmann equation and its 

application to shock-capturing simulation. AIAA J. 2008;46:3038-3048.

30. So RMC, Fu SC, Leung RCK. Finite Difference Lattice Boltzmann Method 
for Compressible Thermal Fluids. AIAA J. 2010;48(6):1059-1071.

31. Lele SK. Direct numerical simulations of compressible turbulent ϐlows: 
fundamentals and applications. In: Haniϐi A, et al., editors. Transition, 
Turbulence and Combustion Modeling. Kluwer Academic Publishers; 
1998. pp. 424-429.

32. Brenner H. Kinematics of volume transport. Physica A. 2005;349:11-59.

33. Brenner H. Navier-Stokes revisited. Physica A. 2005;349:60-132.

34. Greenshields CJ, Reese JM. The structure of shock waves as a test of 
Brenner’s modiϐications to the Navier-Stokes equations. J Fluid Mech. 
2007;580:407-429.

35. Kam EWS, So RMC, Leung RCK. Lattice Boltzmann method simulation 
of aeroacoustics and nonreϐlecting boundary conditions. AIAA J. 
2007;45:1703-1712.

36. Li XM, So RMC, Leung RCK. Propagation speed, internal energy and 
direct aeroacoustics simulation using lattice Boltzmann method. AIAA J. 
2006;44:2896-2903.

37. Leung RCK, Li XM, So RMC. Comparative Study of Nonreϐlecting 
Boundary Condition for One-Step Duct Aeroacoustics Simulation. AIAA J. 
2006;44:664-667.

38. Tam CKW, Webb JC. Dispersion-relation-preserving ϐinite difference 
schemes for computational aeroacoustics. J Comput Phys. 1993;107:262-
281.

39. Gilbarg D, Paolucci D. The structure of shock waves in the continuum 
theory of ϐluids. J Rat. Mech. Analy. 1953;2:617-642.

40. Ohwada T. Structure of normal shock waves: direct numerical analysis 
of the Boltzmann equation for Hard-sphere molecules. Phys Fluids A. 
1993;5:217-234.

41. Alsmeyer H. Density proϐiles in argon and nitrogen shock waves measured 
by the absorption of an electron beam. J Fluid Mech. 1976;74:497-513.

42. Thomas LH. Note on Becker’s theory of the shock front. J Chem Phys. 
1944;12:449-453.

43. Chu CK. Kinetic-theoretic description of the formation of a shock wave. 
Phys Fluids. 1965;8:12-22.

44. Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. 
Clarendon Press; 1994.

45. Yang JY, Huang JC. Rareϐied ϐlow computations using nonlinear model 
Boltzmann equations. J Comput Phys. 1995;120:323-339.

46. Xu K, Tang L. Nonequilibrium Bhatnagar-Gross-Krook model for nitrogen 
shock structure. Phys Fluids. 2004;16:3824-3827.

47. Xu K, Josyula E. Gas-kinetic scheme for rareϐied ϐlow simulation. Math 
Comput Simul. 2006;72:253-256.

48. Weiss W. Continuous shock structure in extended thermodynamics. Phys 
Rev E. 1995;52:R5760-5763.

How to cite this article: Ronald SO. Lattice Boltzmann Method without Invoking the M << 1 Assumption. IgMin Res. July 16, 2024; 2(7): 589-610. IgMin ID: 
igmin223; DOI: 10.61927/igmin223; Available at: igmin.link/p223


